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We analyse a family of brane-world black holes which solve the effective four-dimensional Einstein
equations for a wide range of parameters related to the unknown bulk/brane physics. We first
constrain the parameters using known experimental bounds and, for the allowed cases, perform a
numerical analysis of their time evolution, which includes accretion through the Earth. The study
is aimed at predicting the typical behavior one can expect if such black holes were produced at
the LHC. Most notably, we find that, under no circumstances, the black holes would reach the
(hazardous) regime of Bondi accretion. Nonetheless, the possibility remains that black holes live
long enough to escape from the accelerator (and even from the Earth’s gravitational field) and result
in missing energy from the detectors.

PACS numbers: 04.70.Dy, 04.50.+h, 14.80.-j

I. INTRODUCTION

The existence of extra spatial dimensions [1, 2] and a
sufficiently small fundamental scale of gravity opens up
the possibility that microscopic black holes can be pro-
duced and detected [3, 4, 5] at the Large Hadron Collider
(LHC). Since the existence of large extra dimensions per-
mits the formation of microscopic black holes, these large
extra dimensions and black holes will be searched for at
the LHC. Therefore it is important to study all of the im-
plications of the Randall-Sundrum (RS) model for black
hole production and decay at the LHC. In this paper
we shall, in particular, consider the RS brane-world of
Ref. [2]. Our world is thus a three-brane (with coordi-
nates xµ, µ = 0, . . . , 3) embedded in a five-dimensional
bulk with the metric

ds2 = e−|y|/ℓ gµν dxµ dxν + dy2 , (1)

where y parameterizes the fifth dimension and ℓ is a
length determined by the brane tension. This parameter
relates the four-dimensional Planck mass Mp to the five-
dimensional gravitational mass M(5) and one can have

M(5) ≃ 1 TeV/c2 (for bounds on ℓ, see, e.g., Ref. [6]) and
black holes with mass in the TeV range. Note that, exper-
imental limits require M(5) & 1 TeV but there is no strong
theoretical evidence that places M(5) at any specific value
below Mp. The brane must also have a thickness, which
we denote by L, below which deviations from the four-
dimensional Newton law occur. Current precision exper-
iments require that L . 44 µm [7], whereas theoretical
reasons imply that L & ℓ(5) ≃ ℓp Mp/M(5) ≃ 2 · 10−19 m.
In the analysis below, the parameters M(5) and L are as-
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sumed to be independent of one another, but within the
stated ranges.

Despite many efforts, to date, only approximate black
hole metrics are known on the brane [5, 8, 9]. In a previ-
ous publication [4], we showed that, using a specific form
of the metric found in Ref. [8], and a specific choice of
parameter values, black hole lifetimes can be very long.
It was then conjectured [11] that such black holes might
be able to grow to catastrophic size within the Earth,
contrary to the picture [12] that arises in the ADD sce-
nario [1]. This possibility was then refuted in Ref. [13]
and, in Ref. [14], we solved the system of equations which
describes the mass of a black hole and its momentum as
functions of time for various initial conditions and values
of the critical mass which occur in that model.

In the present paper we consider a wider class of met-
rics of the form obtained in Ref. [8] and constrain the
parameters that appear in it in order to use one form
for a wider range of black hole masses. The constraints
will follow from the experimental bounds mentioned at
the beginning and will indeed us allow to restrict the
space of parameter to a manageable range. Within this
range, we will study the evolution of the correspond-
ing black holes numerically and several conclusions will
be obtained. Most remarkably, we shall see that tidal-
charged black holes produced at the LHC would very
likely evaporate instantaneously and, even for those val-
ues of the parameters which lead to an initial growth,
no catastrophic scenario will arise. Life-times could how-
ever be long enough to allow for black holes to escape
from the detectors and result in significant amounts of
missing energy. This would be a very strong signature of
micro-black holes at the LHC.

We shall use units with 1 = c = ~ = Mp ℓp = ℓ(5) M(5),

where Mp ≃ 2.2 · 10−8 kg and ℓp ≃ 1.6 · 10−35 m are the
Planck mass and length related to the four-dimensional
Newton constant GN = ℓp/Mp. In our analysis we
shall consider only the five-dimensional RS scenario with
M(5) ≃ Mew ≃ 1 TeV (≃ 1.8 · 10−24 kg), the electro-
weak scale, corresponding to a fundamental length ℓ(5) ≃
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2.0 · 10−19m.

II. BRANE-WORLD BLACK HOLE METRICS

Since gravity propagates in the bulk, a matter source
located on the brane will give rise to a modified energy
momentum tensor in the Einstein equations projected on
the three-brane [15]. By solving the latter, one finds that
this backreaction can be described in the form of a tidal
“charge” q, and the effective four-dimensional metric for
a brane-world black hole should thus be given by [8]

ds2 = −Adt2 + A−1 dr2 + r2
(

dθ2 + sin(θ)2 dφ2
)

, (2)

with

A = 1 −
2 ℓp M

Mp r
− q

M2
p ℓ2

p

M2
(5) r2

. (3)

For q > 0, this metric has one horizon at

RH = ℓp

(

M

Mp
+

√

M2

M2
p

+ q
M2

p

M2
(5)

)

. (4)

It is then plausible that both the Arnowitt-Deser-Misner
(ADM) mass M and the (dimensionless) tidal charge q
depend upon the black hole proper mass M0 in such a way
that when M0 vanishes, so do M and q. The functions
M = M(M0) and q = q(M0) could only be determined
precisely by solving the full bulk equations, for exam-
ple using the four-dimensional metric (2) as a boundary
condition. Unfortunately, this task cannot be performed
exactly, but only numerically or perturbatively [9, 10].

A. Parametrized tidal charge

In order to simplify the analysis, we shall first assume
that M = M0 and, at least for M ∼ M(5), that the
functional form of q is given by [25]

q ≃

(

Mp

M(5)

)α (
M

M(5)

)β

, (5)

where α and β > 0 are real parameters. Of course, it
is possible that these parameters depend on the mass
scale as well, for example if there occurs a dimensional
phase transition of the form described in Ref. [14] (see
also Section II E 2 below). In the present paper, we shall
mostly assume that no such case occurs and constrain α
and β by using M(5) ≃ Mew ≃ 1 TeV/c2 and the known
bounds on L. For this purpose, we note that the tidal
term in the metric,

At ≃

(

Mp

M(5)

)α+2(
M

M(5)

)β ℓ2
p

r2
, (6)

dominates over the usual General Relativistic term,

AN ≃ 2
M ℓp

Mp r
, (7)

for r . rc, with

rc ≃ ℓp

(

Mp

M(5)

)3+α(
M

M(5)

)β−1

. (8)

It then makes sense to require that rc be shorter than
the length scale above which corrections to the Newton
potential have not yet been detected. That is, we impose

rc ≪ L , (9)

if the black hole is “small”, in the sense that

RH ≪ rc ≪ L . (10)

If the black hole were “large”, meaning that rc ≪ RH,
the constraint (9) could actually be evaded, but this case
is of no interest here. In fact, for RH ≪ rc, the horizon
radius can be estimated using the tidal contribution (6),

RH ≃ ℓp

(

Mp

M(5)

)1+α/2(
M

M(5)

)β/2

, (11)

otherwise RH approaches the usual four-dimensional ex-
pression

RH ≃ 2 ℓp
M

Mp
. (12)

Note then that the condition of classicality for the hori-
zon, namely

RH ≫ λM , (13)

where

λM ≃ ℓ(5)

M(5)

M
= ℓp

Mp

M
(14)

is the Compton length of the black hole, for small black
holes with α ≃ 0 reads

M ≫ M(5) , (15)

whereas for large black holes approaches the usual four-
dimensional condition

M ≫ Mp . (16)

This implies that micro-black holes with a mass in the
TeV range will always be small in the above sense that
RH ≪ rc.

A more refined classicality condition for all values of β
and α can actually be obtained from the effective four-
dimensional Euclidean action [4, 18],

SE
(4) =

Mp (4 π R2
H)

16 π ℓp
. (17)
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For small black holes, the above expression can be ap-
proximated by

SE
(4) ≃

ℓp Mp

4

(

Mp

M(5)

)α+2(
M

M(5)

)β

, (18)

which can be rewritten as

SE
(4) = ℓp Mp M̃β , (19)

with M̃ = M/Meff and

Meff = M(5)

[

1

4

(

Mp

M(5)

)α+2
]− 1

β

. (20)

The area law then implies that the degeneracy of a black
hole is counted in units of Meff (see Eq. (54) and Refs. [19,
21]). A black hole is classical if its mass is much larger
than Meff , which implies that Meff must be no larger
than M(5) in order to have TeV scale black holes. Using
the fact that β is positive, the above relation allows us
to impose a lower bound on α for all values of β, namely

α & −2 . (21)

Also note that, for large black holes the Euclidean ac-
tion given in Eq. (18) will approach the usual four-
dimensional expression

SE
(4) ≃ ℓp

M2

Mp
. (22)

Regarding Eq. (18), it is interesting to note that its
functional dependence on M is the same as that of a
(4 + d)-dimensional Schwarzschild black hole [4, 12] with

β =
d + 2

d + 1
, (23)

so that, from the thermodynamics point of view, small
tidal-charged black holes with 1 < β < 2 mimic higher-
dimensional Schwarzschild black holes [26].

B. Parameter space for small black holes

We now proceed to analyze different ranges of β > 0.
Since we are interested in micro-black holes, we shall only
consider “small” holes which satisfy the condition (10).
For β 6= 1, one then has that rc = L corresponds to a
critical mass

Mc = M(5)

[

L

ℓp

(

M(5)

Mp

)3+α
]

1
β−1

. (24)

The case β = 1 will be analysed separately in Section II E.
Further, for β 6= 2, the condition that rc = RH leads to

M ≃ MH ≡ M(5)

(

M(5)

Mp

)
α+4

β−2

, (25)

whereas for β = 2 one finds no constraint on M but
RH ≪ rc implies that

(

M(5)

Mp

)α+4

≪ 1 , (26)

or α > −4. The case with β = 2 will also be analyzed in
detail in Section II C 2.

Let us now look at the conditions in Eqs. (9) and (10)
for β 6= 1 and β 6= 2, so that Mc and MH are properly
defined as above. The condition (9) for the critical radius
to be smaller than the thickness of the brane implies

(

M

M(5)

)β−1

≪
L

ℓp

(

M(5)

Mp

)3+α

. (27)

We then have two cases: (i) for 0 < β < 1, the above
condition yields

M & Mc , (28)

while, (ii) for β > 1,

M . Mc , (29)

where Mc was given in Eq. (24). Similarly, one can an-
alyze the lower bound in Eq. (10). Since we are only
interested in small black holes, we assume that the con-
dition (27) is satisfied (the critical radius is smaller than
the thickness of the brane). Below the critical radius the
tidal term dominates, and the Schwarzschild radius of the
black hole from Eq. (4) can be approximated by the tidal
component. Using this approximation, RH ≪ rc can be
written as

(

M

M(5)

)β−2

≫

(

M(5)

Mp

)α+4

. (30)

We again have two separate cases: (a) for β < 2 we get

M . M(5)

(

M(5)

Mp

)
α+4

β−2

≡ MH , (31)

and, (b) for β > 2,

M & M(5)

(

M(5)

Mp

)
α+4

β−2

≡ MH . (32)

C. Parameter β > 1

In this range, the tidal term grows with M faster
than the Newtonian term and Eq. (9) becomes the upper
bound (29) on the maximum black hole mass, namely

M . Mc , (33)

which grows with L, as one might have naively expected.
For M & Mc(L), one should therefore use a different form
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for q, which might signal a (dimensional) phase transition
of the sort considered, for instance, in Refs. [4, 14, 16].

Note that Mc ≫ M(5) if

L

ℓp
≫

(

Mp

M(5)

)α+3

, (34)

or

α . αc ≃
ln(L/ℓp)

ln(Mp/M(5))
− 3 , (35)

For ℓ(5) . L . 44 µm and M(5) ≃ Mew, this implies

− 2 . αc . −1.1 , (36)

so that, for L → ℓ(5), the allowed parameter space be-
comes empty [due to the constraint (21)]. We must then
analyse the three cases (a), (b) and β = 2 separately.

1. Parameter 1 < β < 2

In this case, a “small” black hole must have a mass in
the range

M(5) ≪ M ≪ min{MH, Mc} , (37)

This further implies that both Mc and MH need to be
much larger than M(5) for tidal micro-black holes to exist.
The condition for Mc was given in Eq. (34), and requiring
that MH ≫ M(5) means that

(

Mp

M(5)

)α+4

≫ 1 , (38)

or α & −4, which is however weaker than (21). The
condition (35) must hold for all values of β > 1, which
means that the allowed range for α would be given by

− 2 . α . αc . −1.1 . (39)

We must however notice that, for β → 1+ and α in the
above range, the critical mass Mc → ∞ and an infinitely
massive black hole would be of the tidal kind, thus ruling
out the Schwarzschild. We therefore require that Mc .
M⊙ ≃ 1054 TeV (the mass of the sun), which yields

α & α⊙ ≃
ln(L/ℓp) − (β − 1) ln(M⊙/M(5))

ln(Mp/M(5))
− 3 . (40)

This constraint becomes quickly ineffective [that is α⊙ <
−2 for β & 1.3 and (39) prevails], but will be carefully
taken into consideration in Section V.

2. Parameter β = 2

In this case the black hole is small and classical if α &
−2 and

M ≪ Mc ≃ M(5)
L

ℓp

(

M(5)

Mp

)3+α

. (41)

Then Mc ≫ M(5) again leads to Eq. (34). One there-
fore concludes that the range of allowed values of α is
again given in Eq. (39). Further, as we noted above, the
constraint (40) is already ineffective.

3. Parameter β > 2

The black hole is “small” if

max{MH, M(5)} ≪ M ≪ Mc . (42)

The condition that MH ≪ Mc then implies the new con-
straint

L

ℓp
≫

(

M(5)

Mp

)

α+β+2

β−2

, (43)

and, for the usual values for L and M(5), we obtain

α & −3 β + 2 . (44)

The stronger bound is again given by the condition (21)
for the black hole to be classical. Along with the condi-
tions in Eq. (35), the range for α in this case becomes
again that given in Eq. (39).

D. Parameter 0 < β < 1

In this case, the tidal term grows with M more slowly
than the Newton potential and we obtained

M & Mc , (45)

which, correspondingly, decreases for increasing L. We
assume that the black hole is created with a mass close
to the five-dimensional Planck mass M(5). This implies
that for the black hole to be tidal, the critical mass Mc

needs to be smaller than M(5), which results in the upper
bound (35).

The black hole is then small for

M(5) ≪ M ≪ MH , (46)

where MH is again given in Eq. (25). A necessary condi-
tion again is that MH ≫ M(5) if α & −4. Combining all
the restrictions, we again arrive at the range in Eq. (39).

E. Parameter β = 1

Both terms in the metric coefficient A now grow lin-
early with M and Eq. (8) reads

rc ≃ ℓp

(

Mp

M(5)

)3+α

, (47)

which does not depend on M and, therefore, Eq. (9) does
not place any bound on M . It can instead be used to
constrain the parameter α, namely Eq. (35).
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FIG. 1: Remnant mass Mc in TeV/c2 for M(5) ≃ Mew, L ≃
1µm, −1.3 < α < −1.2 and 0 < β < 0.5.

1. Parameter α = αc

It is interesting to work this case in detail. For α = αc

one obtains

A = 1 −
2 ℓp M

Mp r
−

ℓp L M

Mp r2
, (48)

and

RH = ℓp

(

M

Mp
+

√

M2

M2
p

+
L M

ℓp Mp

)

. (49)

For the usual choice of M ∼ M(5) ≃ Mew ≃ 1 TeV and
L . 44 µm, the second term in the square root above
dominates and the horizon radius is well approximated
by

RH ≃ ℓp

√

L M

ℓp Mp
, (50)

which, for M & M(5) ≃ Mew and L ≫ ℓp, is larger than
the four-dimensional Schwarzschild radius (12).

2. Parameter α = 0

This case was employed in Refs. [4, 11, 14] and we note
here that it corresponds to

rc ≃ ℓp

(

Mp

M(5)

)3

, (51)

which, for M(5) ≃ Mew, is much larger than all the al-
lowed values of L. Consequently, this case can only be
used for sufficiently small mass M such that the gravi-
tational force of the black hole is negligible small. This
condition can be realised by requiring that the capture
radius of the black hole on the surrounding matter is
much smaller than L, which yields Mc . 1 kg [14]. As

was explained in Ref. [14], when M approaches Mc, one
expects a “dimensional phase transition”, which can be
rephrased by saying that the functional dependence of
the tidal charge q on M must change. We shall not con-
sider this case here any further, and just refer the reader
to Ref. [14] for more details.

III. EVAPORATION

We shall describe black hole evaporation by means of
the microcanonical ensemble [14, 19]. The general form
for the luminosity of a black hole in D space-time dimen-
sions is given by

L(D)(M) =

∫ ∞

0

S
∑

s=1

n(D)(ω) Γ
(s)
(D)(ω)ωD−1dω , (52)

where D is the space-time dimensionality, Γ
(s)
(D) the grey

body factor with S the number of particle species which

can be emitted. For the sake of simplicity,
∑

s Γ
(s)
(D) will

be taken to be a constant.
The occupation number density for the Hawking par-

ticles in the microcanonical ensemble is in general given
by [19, 21]

n(D) = B

[[M/ω]]
∑

n=1

exp

{

SE
(D)(M − n ω)

ℓp Mp
−

SE
(D)(M)

ℓp Mp

}

,(53)

where SE
(D) is the Euclidean action, [[X ]] denotes the in-

teger part of X and B = B(ω) encodes deviations from
the area law [22] (in the following we shall also assume B
is constant in the range of interesting values of M). As
we noted before, since

SE
(D)(M)

ℓp Mp
=

(

M

Meff

)β

≡ M̃β , (54)

the black hole degeneracy is counted in units of Meff .
For the usual Schwarzschild action (22), n(ω) mimics the
canonical ensemble (Planckian) number density in the
limit M → ∞, and the luminosity becomes

LH ∼

∫ ∞

0

ω3 dω

eβH ω ∓ 1
∼ T 4

H , (55)

where TH = β−1
H = 1/(8 π M) is the Hawking tempera-

ture. Upon multiplying by the horizon area [see Eq. (12)],
one then obtains the Hawking evaporation rate [20]

dM

dτ
≃

geff M3
p

960 π ℓp M2
, (56)

where geff ≃ 10 is the typical number of effective degrees
of freedom a four-dimensional black hole can evaporate
into.
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FIG. 2: Power s in Eq. (59) for 0 < β ≤ 2.

We now calculate the luminosity for the general case
of the tidal-charged black holes. Since we are working in
an effective four-dimensional picture, we can set D = 4
in the above expressions. From Eqs. (53) and (52), we
get

L(M) = B e−M̃β

∫ ∞

0

[[M̃/ω̃]]
∑

n=1

e(M̃−n ω̃)
β

ω̃3 dω̃ , (57)

with M̃ defined earlier, ω̃ = ω/Meff and all numerical
constants (independent of M) included in B. Upon fur-
ther redefining B at each step, one then finds

L(M) = B e−M̃β
∞
∑

n=1

∫ M̃/n

0

e(M̃−n ω̃)
β

ω̃3 dω̃

= B e−M̃β
∞
∑

n=1

1

n4

∫ M̃

0

exβ
(

M̃ − x
)3

dx. (58)

The integral in Eq. (58) can be evaluated analytically for
fixed β, but explicit expressions can be rather cumber-
some and will be omitted in general. Since we require
the classicality condition M ≫ Meff , the decay rate is in
general well-approximated by a power-law, namely

dM

dτ

∣

∣

∣

∣

evap

≃ C M s , (59)

where a sample of the powers s is plotted in Fig. 2. The
normalization in the above expression will be fixed by
the same procedure as in Refs. [4, 21]. We shall therefore
equate the rate (59) with the Hawking expression (56)
at the mass scale M = Mc in Eqs. (29) and (28) above
(or below) which brane-world corrections are negligibly
small.

For instance, let us work out the case with β = 1 and
α = αc in details. The effective four-dimensional Eu-
clidean action [4, 18] is given by

SE
(4) =

Mp (4 π R2
H)

16 π ℓp
≃

L M

4
= ℓp Mp

(

M

Meff

)

, (60)

with

Meff = 4 Mp
ℓp

L
, (61)

and, given the limits on L we discussed in the Introduc-
tion, we have a rather wide range for Meff , namely

10−14 TeV . Meff . Mp . (62)

Finally, note that both αc and M(5) have been replaced
by the phenomenological length L in all of the relevant
expressions. The luminosity in this case is simple enough,
that is

L ≃ B e−M̃
∞
∑

n=1

1

n4

∫ M̃

0

ex
(

M̃ − x
)3

dx ≃ B̃ , (63)

where we used Meff ≪ Mew ∼ M [27] and B̃ is a new
constant. Upon multiplying by the horizon area [see
Eq. (50)], we then get the microcanonical evaporation
rate per unit proper time

dM

dτ

∣

∣

∣

∣

evap

≃ C M , (64)

where C is again a constant. We then equate the rate (64)
with the Hawking expression (56) for M = Mc defined
by RH(Mc) ≃ L. Eq. (50) then yields

Mc ≃ Mp
L

ℓp
. (65)

Finally

C =
geff

960 π ℓp

(

Mp

Mc

)3

≃
geff ℓ2

p

960 π L3
, (66)

where we used Eq. (24) in the approximate equality.

IV. SUBATOMIC ACCRETION

There are two basic mechanisms by which a micro-
scopic black hole in general might accrete: one due to
the collisions with the atomic and sub-atomic particles
encountered as they sweep through matter, and one due
to the gravitational force the black hole exerts on sur-
rounding matter once it comes to rest. The latter form is
known as Bondi accretion and is appreciable only when
the black holes have horizon radii greater than atomic
size.

In our analysis we focus on the subatomic mechanism,
whose fundamental equation is given by

dM

dt

∣

∣

∣

∣

acc

= π v ρ R2
eff , (67)

where ρ is the density of the material through which the
black hole is moving, and v is the relative velocity of the
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black hole and the surrounding matter, while t is the time
of observers at rest with respect to the medium.

For sufficiently small horizon radius RH, the capture
radius Reff can be determined by simple Newtonian ar-
guments. In particular, we can assume that it is given
by the range over which the gravitational force of the
black hole can overcome the electromagnetic force the
nucleus of an atom is bound to the surrounding medium.
An expression for this electromagnetic capture radius in
five dimensions can be obtained following the analysis of
Ref. [12] and using the metric (2). Upon neglecting the
1/r terms, one first obtains a Newtonian force

FG ≃ −
ℓp L M m

Mp (b − d)3
, (68)

where m is the typical mass of a matter constituent, b
the impact parameter and d the displacement of m. This
force must be equated to the electromagnetic restoring
force inside the atom,

FE(d) = −K d , (69)

where K is a constant, and the resulting equality maxi-
mized with respect to d at fixed b. The final result yield
the electromagnetic capture radius

REM ≃

(

ℓp L M m

K Mp

)1/4

= CEM M1/4 , (70)

which is meaningful only if REM ≫ RH.
Again for the simple case of β = 1 and α = αc this can

be expressed as.

M ≪
Mp m

ℓp L K
≡ MEM . (71)

For example, with L ≃ 1 µm, M(5) ≃ Mew, K =

224 J/m2 and m ≃ 6 · 10−27 kg, one obtains

MEM ≃ 1022 kg . (72)

We can also use the above capture radius to bound
the maximum black hole mass so that deviations from
the Newton law at short distance are below the tested
scale, that is REM ≪ L. This yields

M ≪
K L3 Mp

ℓp m
≡ M ′

EM . (73)

Upon using the same values above, we obtain

M ′
EM ≃ 1021 kg . (74)

Since M ′
EM ≪ MEM, one can use the capture radius (70)

in the evolution equation (67) up to M ≃ M ′
EM.

In Section V, we shall see that the above bounds on
the mass are actually irrelevant for our analysis.

V. TIME-EVOLUTION

The time evolution of the black hole mass is in gen-
eral obtained by summing the evaporation and accretion
expressions,

dM

dt
=

dM

dt

∣

∣

∣

∣

evap

+
dM

dt

∣

∣

∣

∣

acc

, (75)

where the decay rate in the reference frame of the Earth
is related to the proper decay rate by

dM

dt

∣

∣

∣

∣

evap

≃ −
1

γ

dM

dτ

∣

∣

∣

∣

evap

, (76)

and γ is the relativistic factor for a point-particle of mass
M and three-momentum of magnitude p,

γ =

√

M2 + p2

M
. (77)

Finally the time-evolution of the momentum in the Earth
frame is described by the equation

dp

dt
=

p

M

dM

dt

∣

∣

∣

∣

evap

. (78)

The net change of mass with respect to time (75) and the
equation (78) for the time evolution of the momentum
form a system of equations which can be solved numeri-
cally to obtain M(t) and p(t).

Again, for the simple case of β = 1 and α = αc,
Eqs. (64) and (66) yield the evaporation rate

dM

dt

∣

∣

∣

∣

evap

≃ −
geff ℓ2

p M2(t)

960 π L3
√

M2(t) + p2(t)
, (79)

and

dp

dt
≃ −

geff ℓ2
p M(t) p(t)

960 π L3
√

M2(t) + p2(t)
. (80)

The accretion rate is given by Eq. (67) for Reff = REM,

dM

dt

∣

∣

∣

∣

acc

≃

(

ℓp L m

K Mp
M(t)

)1/2
π ρ p(t)

√

M2(t) + p2(t)
, (81)

where ρ ≃ 5.5 · 103 kg/m3 is the Earth’s mean density.
Note that accretion dominates only if the momentum is
larger than a critical value, which for this case reads

pc =
geff

960 π2 ρ

(

ℓ3
p K Mp M

L7 m

)1/2

. (82)

Also note that the evaporation rate grows with M faster
than the accretion rate, which implies that the black hole
cannot accrete indefinitely.

In the following we shall evolve a black hole pro-
duced with a typical initial mass M(0) = 10 TeV/c2 ≃
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p(0) M(0) Mc Mmax REM RH S T ME RE tE vE

(TeV/c) (TeV/c2) (TeV/c2) (kg) (m) (m) (m) (sec) (kg) (m) (sec) (km/sec)

5.0 10.0 1 · 1044 2.5 · 10−5 1.0 · 10−12 6.0 · 10−22 3.8 · 1015 2.6 · 1025 1.4 · 10−21 1.0 · 10−16 2.6 1.9 · 103

4.0 10.5 1 · 1044 1.9 · 10−5 1.0 · 10−12 5.0 · 10−22 2.6 · 1015 2.1 · 1025 1.4 · 10−21 1.0 · 10−16 3.3 1.6 · 103

3.0 10.5 1 · 1044 1.3 · 10−5 1.0 · 10−12 4.0 · 10−22 2.1 · 1015 1.5 · 1025 1.3 · 10−21 1.0 · 10−16 4.0 1.3 · 103

2.0 10.8 1 · 1044 7.6 · 10−6 8.0 · 10−13 2.8 · 10−22 1.6 · 1015 1.0 · 1025 1.3 · 10−21 1.0 · 10−16 6.0 8.3 · 102

1.0 11.0 1 · 1044 3.0 · 10−6 7.0 · 10−13 1.6 · 10−22 1.0 · 1015 5.2 · 1024 1.4 · 10−21 1.0 · 10−16 13 3.9 · 102

1.0 · 10−1 11.0 1 · 1044 1.4 · 10−7 3.0 · 10−13 2.4 · 10−23 2.2 · 1014 5.2 · 1023 1.4 · 10−21 1.0 · 10−16 1.3 · 102 39

1.0 · 10−2 11.0 1 · 1044 6.5 · 10−9 1.5 · 10−13 3.5 · 10−24 4.8 · 1013 5.2 · 1022 1.4 · 10−21 1.0 · 10−16 1.3 · 103 3.9

TABLE I: Time evolution of black hole mass as function of initial momentum for L = 44 µm, β = 1.25, α = −1.8 which result
in critical mass Mc = 1044 TeV/c2.

1.8 · 10−23 kg and momentum p(0) ≤ 5 TeV/c [28], with
K = 224 J/m2 and m = 5.5 · 10−27 kg. We will analyze
values for the parameter β in each of the different ranges
considered in Section II. For the black holes to be “tidal”,
limits for the ranges of α will be imposed according to
our findings in that Section, that is

− 2 . α . αc . −1.1 , (83)

for β 6= 1 or 2, and (40) will also be implemented for
1 < β . 1.3. Besides these parameters which deter-
mine the metric, the only free parameter in the model is
given by the size of the extra dimension L. This will be
varied in the range 10−2 µm . L . 44 µm [29], the cor-
responding critical mass Mc being given as of Eq. (24).
Our results are given in Tables I-V, in which Mmax is the
maximum black hole mass, REM and RH the correspond-
ing maximum values of the horizon and capture radius,
S and T the space covered and the time taken to reach
Mmax; ME the mass reached after travelling the Earth’s
diameter, RE the corresponding capture radius, tE the
time to travel the Earth’s diameter and vE the velocity
at that point.

A. Rapidly decaying solutions

The first important result is that the black hole decays

instantly (i.e., the decay time is shorter than 10−10 sec)
after being created for 0 < β < 1 and 1.25 . β, all other
parameters being varied within the ranges given previ-
ously in Section II [30]. Fig. 3 shows a typical example
of the time evolution of mass and momentum in this case.

B. Growing solutions

We then proceed to study the region 1 < β . 1.25, in
which the mass of the black hole can grow.

The evolution of the black hole mass as a function of
the initial mass and momentum is shown in Table I, for
a constant thickness of the brane L = 44 µm, β = 1.25,
and α = −1.8. The critical mass (24) for this choice

M
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FIG. 3: Mass (in TeV/c2) and momentum (in TeV/c) for
L = 1 µm, β = 0.5, α = −1.5, M(0) = 10 TeV/c2 and p(0) =
5TeV/c.

of parameters is Mc = 1044 TeV/c2, which is within the
allowed range. A typical example is also plotted in Fig. 4.

One can see that the maximum value of the black hole
mass decreases as the initial momentum decreases. This
could already be inferred from Eq. (67). In fact, the ac-
cretion rate is proportional to the black hole velocity and,
for lower velocities, the accretion rate decreases and the
evaporation rate becomes more and more dominant. We
stress that the maximum mass was calculated assuming
that the black hole would travel through a medium with
a density equal to the average density of the Earth all
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L (µm) Mc (TeV/c2) Mmax (kg) REM (m) RH (m) S (m) T (sec) ME (kg) RE (m) tE (sec) vE (km/sec)

5.0 1 · 1053 1 · 1025 1 · 10−5 1 · 10−4 1 · 1031 1 · 1070 8.1 · 10−22 4 · 10−17 5.2 · 10−1 1.1 · 104

1.0 1 · 1046 1 · 109 1 · 10−9 1 · 10−13 1 · 1023 1 · 1047 8.1 · 10−23 1 · 10−17 2.3 · 10−1 3.2 · 104

1.0 · 10−1 1 · 1036 1 · 10−13 1 · 10−15 1 · 10−25 1 · 1012 1 · 1014 3.3 · 10−23 8 · 10−18 1.3 · 10−1 7.8 · 104

1.0 · 10−2 1 · 1026 N/A N/A N/A N/A N/A N/A N/A N/A N/A

TABLE II: Time evolution of black hole mass as function of extra-dimension size L for β = 1.1, α = −1.5. Initial conditions
are: M(0) = 10TeV/c2 (= 1.8 · 10−24 kg) and p(0) = 5TeV/c. N/A means black hole mass does not grow.

L (µm) α Mc (TeV/c2) Mmax (kg) REM (m) RH (m) S (m) T (sec) ME (kg) RE (m) tE (sec) vE (km/sec)

44 -1.44 2 · 1053 1 · 1025 1 · 10−4 1 · 10−5 1 · 1030 1 · 1070 1.4 · 10−21 1 · 10−16 2.6 2.0 · 103

5.0 -1.50 4 · 1053 1 · 1025 1 · 10−5 1 · 10−4 1 · 1031 1 · 1070 8.1 · 10−22 4 · 10−17 5.2 · 10−1 1.1 · 104

1.0 · 10−1 -1.59 1 · 1051 1 · 1019 1 · 10−7 1 · 10−8 1 · 1028 1 · 1062 3.3 · 10−23 8 · 10−18 1.3 · 10−1 7.8 · 104

1.0 · 10−2 -1.67 1 · 1054 1 · 1024 1 · 10−6 1 · 10−6 1 · 1032 1 · 1071 2.2 · 10−23 4 · 10−18 1.0 · 10−1 1.1 · 105

TABLE III: Time evolution of black hole mass with critical mass Mc near upper bound and β = 1.1. Initial conditions are:
M(0) = 10TeV/c2 (= 1.8 · 10−24 kg) and p(0) = 5TeV/c.

the distance from the point of creation to the point of
maximum mass.

For black holes created on Earth, the maximum value
of the mass ME would indeed be much smaller, since af-
ter crossing the Earth, the density drops to zero and so
does the accretion rate. From Table I, the actual value
of the mass when the black hole leaves the Earth is on
average fifteen orders of magnitude smaller than the po-

M
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FIG. 4: Mass (in TeV/c2) and momentum (in TeV/c) for
L = 44 µm, β = 1.25, α = −1.8, M(0) = 10 TeV/c2 and
p(0) = 5TeV/c.

tential maximum mass and its capture radius REM too
small to start Bondi accretion. Another point that needs
to be remarked is that, for most values of the initial mo-
mentum, the black hole crosses the Earth with a residual
velocity vE larger than the escape velocity (≃ 11 km/sec)
and can in fact leave our planet. The only case in which
the velocity is smaller than the escape velocity occurs for
p(0) = 0.01 TeV/c, but in this case the maximum mass
is just of the order of 10−9 kg. In all cases, the capture
radius REM remains much larger than the gravitational
radius RH, ensuring the Newtonian approximation for
the former holds.

Given the dependence of the results on the initial mo-
mentum, we next analyze separately the regimes with
large or small initial momentum.

1. Large initial momentum

The data in Table II shows the dependence of the
maximum black hole mass on the thickness of the brane
for p(0) = 5 TeV/c, M(0) = 10 TeV/c2, β = 1.1 and
α = −1.5. Note that the constraint in Eq. (40) excludes
a thickness L ≃ 44 µm. The maximum attainable mass,
if the black hole would travel through matter with a con-
stant density equal to the Earth’s, is directly proportional
to L in this case and tops at L ≈ 5 µm. The value of the
black hole mass when leaving the Earth in this case is of
the order of 10−21 kg. Bellow L = 0.01 µm the black hole
decays instantaneously again.

Table III was obtained with the parameters adjusted
so as to keep the critical mass Mc near the maximum
allowed value M⊙ ≃ 1054 TeV. Again the initial value for
the momentum was set to p(0) = 5 TeV/c and the initial
mass of the black hole to M(0) = 10 TeV/c2. One can
then observe that the potential maximum mass Mmax

is again very large but the time taken to reach it is at
least 1062 sec, much larger than the estimated age of the
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L (µm) Mc (TeV/c2) Mmax (kg) REM (m) RH (m) S (m) T (sec) ME (kg) RE (m) tE (sec) vE (km/sec)

5.0 4 · 1053 1 · 1023 1 · 10−5 1 · 10−5 1 · 1029 1 · 1070 2.5 · 10−22 4 · 10−17 3.0 · 102 21

1.0 1 · 1046 1 · 107 1 · 10−10 1 · 10−14 1 · 1022 1 · 1047 1.1 · 10−22 1 · 10−17 1.6 · 102 51

1.0 · 10−1 1 · 1036 1 · 10−15 1 · 10−16 1 · 10−26 1 · 1011 1 · 1014 4.4 · 10−23 1 · 10−17 86 1.2 · 102

1.0 · 10−2 1 · 1026 N/A N/A N/A N/A N/A N/A N/A N/A N/A

TABLE IV: Time evolution of black hole mass as function of extra-dimension size L for β = 1.1, α = −1.5. Initial conditions
are: M(0) = 11TeV/c2 and p(0) = 0.01 TeV/c. N/A means black hole mass does not grow.

L (µm) α Mc (TeV/c2) dM/dt|t=0 M (kg) REM (m) RH (m)

44 -1.44 2 · 1053 2.8 · 10−2 4.0 · 10−13 1.3 · 10−14 9.0 · 10−25

5.0 -1.50 4 · 1053 1.1 · 10−2 1.9 · 10−13 6.5 · 10−15 2.0 · 10−25

1.0 · 10−1 1.59 1 · 1051 1.3 · 10−3 5.3 · 10−14 1.7 · 10−15 1.8 · 10−26

1.0 · 10−2 -1.67 1 · 1054 4.5 · 10−4 2.4 · 10−14 8.1 · 10−16 2.7 · 10−27

TABLE V: Time evolution of black hole mass with critical mass Mc near upper bound for time equal to approximative age of
the Universe and β = 1.1. Initial conditions are: M(0) = 11 TeV/c2 and p(0) = 0.0001 TeV/c.

Universe (≃ 1018 sec). The data in the table also shows
that the black hole would cross our planet in seconds with
a final velocity vE much larger than the Earth’s escape
velocity. The mass ME of the black hole at that time
is on the order of 10−22 kg, which is again very small,
and its capture radius RE well below the scale of Bondi
accretion.

2. Small initial momentum

Similar dependencies were studied for the case of small
initial momentum. In Table IV, the initial momentum of
the black holes was set to p(0) = 0.01 TeV/c and the
initial mass M(0) = 11 TeV/c2. The maximum attain-
able black hole mass is smaller than in the case with a
larger initial momentum, and the black hole leaves the
Earth with velocity larger than the escape velocity from
the gravitational field of the Earth.

If one studies the black hole velocity as a function of
the initial momentum with the critical mass Mc kept near
its maximum allowed value, one finds that the highest
value of the initial momentum for which the velocity of
the black holes after passing through the Earth is smaller
than the escape velocity is on the order of 100 MeV. Con-
sidering the data in Table I, in order the maximize the
maximum mass that the black hole can reach, its initial
momentum needs to be near the highest possible value.
Table V was obtained setting the parameters so that the
critical mass is near the maximum allowed value, with
p(0) = 10−4 TeV/c and M(0) = 11 TeV/c2 respectively.
The black hole in this case has the highest initial mo-
mentum which is small enough to be trapped inside the
Earth. Due to the extremely large black hole lifetimes
encountered in this case, we studied the evolution for a
duration of the order of magnitude of the present age
of the Universe and found a final mass of the order of
10−14 kg. As in all the previous cases, the capture ra-

dius remains much smaller than the atomic size and the
black hole does not start Bondi accretion. Also the grav-
itational radius is orders of magnitude smaller than the
electromagnetic radius, which means that the Newtonian
approximation used to derive the accretion rate holds.

VI. CONCLUSIONS

We studied the evolution in time of microscopic black
holes that could be produced at the LHC, based on the
model presented in Refs. [4, 14] and the description of
brane-world black holes given in Ref. [8]. In particular,
we extended the treatment of Ref. [14] by considering a
general form of the tidal term containing two parame-
ters, α and β, whose ranges were first analyzed in Sec-
tion II. The parameter β was allowed to take any posi-
tive value. Conditions for the black holes to be tidal and
phenomenologically acceptable were then used to deter-
mine the range for α at fixed β. Subsequently, the time
evolutions of the black hole mass and momentum were
obtained numerically with the two parameters α and β in
the allowed ranges by solving the equations which govern
the luminosity and accretion rates, in Sections III-V.

First, we found that tidal black holes would evaporate
(almost) instantly, except for 1 < β . 1.25. (The par-
ticular case with β = 1 was studied in Ref. [14].) Two
distinct regimes were then taken into consideration inside
this range: large initial momentum, and small initial mo-
mentum. Numerical data for the regime with large ini-
tial momentum are presented in Tables II and III, and
show that the black holes with a large value of the initial
momentum would cross the Earth in a matter of sec-
onds and come out with velocities much larger than the
Earth’s escape velocity. Their mass, after crossing the
Earth, is of the order of 10−22 kg, after which accretion
turns off, and the black holes just evaporate. If the black
holes are created with a small initial momentum, it is
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possible that they are trapped inside the Earth. How-
ever, Table I shows that the maximum mass decreases
for decreasing initial momentum. Therefore, the abso-
lute maximum mass is reached for the maximum initial
momentum which is still small enough to allow for trap-
ping. Tables IV and V then show that, for black holes
trapped inside the Earth, after a time comparable with
the age of the present Universe, the mass is on the order

of 10−14 kg, which is still negligibly small.
Our overall conclusion is therefore that the tidal-

charged black holes are a viable model of micro-black
holes which might be produced at the LHC. The model
predicts that such black holes cannot grow to catas-
trophic size, but might live long enough to escape the
detectors and result in significant amounts of missing en-
ergy.
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