Project Name
System and Software Architecture Description (SSAD)

Team Number

[This page is intentionally left blank]

Table of Contents

11
Introduction

1.1
Purpose of SSAD
1
1.2
Standards and Conventions
1
1.3
References
1
2
Architectural Analysis
3
2.1
Component Model
3
2.2
Behavior Model
3
2.3
Enterprise Model
4
3
System Design
5
3.1
Architectural Views
5
3.2
Framework and Protocol Specifications
6
3.3
Object Model
6
3.4
Operations Model
7
3.5
Class Model
7
3.6
Configuration Model
7
4
Common Definition Language
9
Appendix
11
A. Reference
11
B. Vendor documents
11

Version control

Date
Author
Changes
Version

 MACROBUTTON NoMacro [Type today's date]
 MACROBUTTON NoMacro [Author's name]
 MACROBUTTON NoMacro [Changes made since last version]
0.1

List of Figures

Error! No table of figures entries found.

1 Introduction

The system and software architecture description of the Project Name will be introduced.

1.1 Purpose of SSAD

· This paragraph shall summarize the purpose and contents of this document with respect to the particular project and people involved

· Avoid generic introductions as much as possible: for instance, you can show how your particular System and Software Architecture Description meets the completion criteria for the given phase

The System and Software Architecture document describes how the Project Name DOCVARIABLE "Project" * MERGEFORMAT

 DOCVARIABLE Project * MERGEFORMAT

 DOCVARIABLE Project * MERGEFORMAT system

requirements will be realized in a production system.
1.2 Standards and Conventions

· Standards used (DOD, IEEE)

· Notation used (UML)

New symbols used

Stereotypes

Naming Conventions

· Consistent use of names for elements

e.g., anObject, the_attribute, MyClass, theOperation()

e.g., nouns for Components, Objects, verbs for Behaviors, Operations

e.g., label for relationships and outlets

1.3 References

· Provide complete citations to all documents, meetings and external tools referenced or used in the preparation of this document

· This should be done in such a manner that the process and information used can be traced and used to reconstruct the document if necessary

Operational Concept Description MACROBUTTON NoMacro [Click here and type version referenced]
System and Software Requirements Definition MACROBUTTON NoMacro [Click here and type version referenced]
Feasibility Rationale Description MACROBUTTON NoMacro [Click here and type version referenced]
Life Cycle Plan MACROBUTTON NoMacro [Click here and type version referenced]
 MACROBUTTON NoMacro [Click here and type other references]
2 Architectural Analysis

· The System Analysis is the precise description of target system independent of implementation: "what" is wanted is more pertinent than the "how" it can be done. The deliverables are component, behavior, and enterprise models, which are detailed representations of the proposed system from different perspectives.

· Each analysis view has a counterpart in the Domain Description, which provides the initial starting point and context. Analysis models draw basic information and elaborate in greater detail the aspects of the system to be built as specified by the System Requirements.

· Your main architectural task is to discover the fundamental components and behaviors of the proposed system that arise within the Domain Description and document these in a concise way. This provides the critical high-level architecture that will be used as a blueprint by the designers to map out a sound and faithful design for implementation of the proposed system.
2.1 Component Model

· The component model provides the architectural breakdown of the system in terms of basic tangible parts of the proposed system that arise from the Capabilities. How the components can or will be implemented, is a design issue.

· All components should be understandable by the Domain Experts. Analysis components always have direct relationships to Entities from Domain Description. However, the component model should not be a repetition of the Entity Model.

· A Component is an abstraction that represents both memory and functionality within the proposed system and maintains a non-trivial state:

· Memory: a component’s static qualities such as attributes and relationships.

· Functionality: set of behaviors that embody operations

· Important test: Components have "form" which allow them to transition from one state to another. If no state transitions can be identified, the legitimacy as a component should be questioned.

· Objects are the smallest (most refined) kind of entity we consider in our models prior implementation. Components are compositions (membership relationships, such as strong aggregation) of objects with a high degree of cohesion within the domain. Later, in design, we may need to decompose components into objects.

· Objects are used to represent the system in software. Components are used to describe the system to the domain experts at a higher level of abstraction, independent of software. An object is a specialization of a component. It is an atomic unit for systems analysis purposes.

· [Consistent with Entity Model (OCD 2.4)]

2.2 Behavior Model

· The OCD describes the Operational Scenarios using Early Prototype Screen dumps and scenario Use Cases

· Use an outline form: makes it easier to identify boundaries of control (i.e., the point at which a behavior requires interaction with users or other elements outside the system)

· [Consistent with the Organization Activity Model (OCD 2.5)]

· [Consistent with Capabilities (OCD 3.2)]

2.3 Enterprise Model

· The Enterprise Model is the complete model of the system domain that provides a concise overview of the overall structure through classification, including component structures and behaviors and their taxonomies.
· In here, behaviors are mapped to the components that will carry out the operations. It is often useful to classify behaviors in an inheritance diagram, as this will make the assignment task easier.
· The use of design patterns, such as factoring to perform component-based sub-typing usually should be considered in design.
· The goal is to get an overall organization of the system components and system behaviors, so that choices on the "elegance" and faithfulness of the entities can be made.
· Generally, all the components detailed in the Component Model must be represented in the Enterprise model, however there may be classes in the Enterprise model that are not detailed in the Component Model (in particular generalizations or super-types).
· Includes classes for top level components and behaviors organized into a class tree hierarchy or diagram (if a distinction must be made, then sub-types must be created

· Perform generalization, specialization, decomposition, factoring

· Classify components into Is-Kind-Of relationships and Is-Part-Of relationships

· [Consistent with Behavior Model]

· [Consistent with Component Model]

· [Consistent with Capabilities (OCD 3.2)]

2.3.1 Component Classifications

Classification hierarchy of components given in Component model
2.3.2 Behavior Classifications

Classification hierarchy of the behaviors in the Behavior Model
3 System Design

· Describe how the system will be implemented in software using specific technology solutions that meet System Requirements, Project Requirements, Level of Service Requirements, etc.

· In particular, in this section, you should handle:

· Non-trivial roles and states

· Bi-directional relationships

· Multi-way relationships

· Global and relational attributes

· Complex dependencies and other constraints

· Decompose Components into software-level objects and support technologies (database, web-servers, etc…)

· Propose direct implementation considerations, such as the use of databases, web-servers, hardware, critical algorithms, operation sequence, significant events, GUI’s, etc.

3.1 Architectural Views

Architectural Views provide the high level design information about the proposed system. The different architectural views project different dimensions of the proposed system and identify Logical Components, System topology and structure and Deployment and Physical Arrangement of the proposed system

· What are they? Describe how system components are mapped into low-level architecture

· Why? Help identify what objects are needed by grouping components into technology representation “clusters” discovers straightforward implementations

· identifies “gaps” (often due to communication between components) for which particular system objects must be created to fill (i.e., no direct relevance to domain, only makes components “work” in software)

· It is critical that the System Design Views be consistent with the System Block Diagram (SSRD 3.1)

3.1.1 Logical Component View

· The Logical Component View concerns itself with the logical software/hardware/network module organization within the development environment, taking into account derived requirements related to ease of development, software management, reuse, and constraints imposed by programming languages and development tools.

· Should be consistent with system block diagrams in the System Definition (SSRD 3.1)

· Assigns components to system block diagram or other logical system group

· conceptual understanding and completeness

· ensures consistency, completeness, accessibility, and necessity of system parts and relationships to outside (system boundaries)

· may introduce specific technology choices (some may exist from block diagram or requirements)

3.1.2 System Topology

· The system topology shows the configuration in which components are connected.

3.1.3 System Deployment View

· The System Deployment View concerns itself with the physical software/hardware/network module organization

· It should be consistent with Enterprise Model and the various interface and block diagrams

· Assign components to deployed hardware and software

if known, includes OS, mechanisms, and frameworks

· Splits system into physical groups

3.1.4 Component Specifications

· Add to the components from the Component Model, new components such as Mechanisms, to make the system realizable in software (i.e., pure software level components which do not directly map to entities in the Domain)

· May be implementation (technology) specific (e.g., database tables, HTML templates, HTTP servers, COTS products, API's, class libraries, design patterns, etc.)

· Complex relationships of software elements which are never considered independently (e.g., a COTS package with no source code) or require "wrappers", "glue" or "agents" during analysis to integrate into the particular software system

3.2 Framework and Protocol Specifications

· The architecture describes the interactions of the system components and how the component interactions support the system activities. The interactions take place with the help of various mechanisms and frameworks. These frameworks are often picked off-the-shelf and are industry standards. This section should describe the specific frameworks to be used and the nature of interactions among the logical components and design components in order to support all the behaviors of the system as described the Behavior Model
· Protocols and services are typically independent of the domain and their choice depends upon the various requirements of the system, most notably Level of Service Requirements (SSRD 5).

· Examples of frameworks include CORBA Services and Facilities, Java JDK, TCP/IP and various network protocols as well as security and audit mechanisms.

3.3 Object Model

· The Object Model is a refinement of the Logical Component View
· Specify objects to be built in the system using suggested Object Specification template.

· When detailing the design, include specifications for:

· DB tables

· file structures

· HTML templates (dynamic generation)

· runtime environment

· COTS interface parameters

· Utility libraries

3.4 Operations Model

· The Operations Model should be a refinement of the Behavior Model

· Augment behavior model with critical operations needed to carry out

· Try to use existing objects, minimize messages that go outside an object

3.4.1 Critical Algorithms

· Detail and explain critical custom algorithms

· Detailed policies and associated algorithms for carrying out policies

3.4.2 Operation Specifications

· Describe the operation semantics and logic if the operation is non-trivial

3.5 Class Model

· The Class Model is a refinement of the Enterprise Model

· Perform generalization, specialization, decomposition, factoring to create Is-Kind-Of relationships

· [Consistent with Object Model]

· [Consistent with Operations Model]

Include the following Object classifications:

· Database Schema

· Object inheritance (abstract, concrete, leaf)

· HTML templates and Organization Folders/Directories

· API groups

· Operation library groups

· Enterprise classes
3.6 Configuration Model

· The configuration model describes how classes in the Class Model are implemented in programs and files. The model describes the dependency structure and directory structure of the software development.

· Include all required files, scripts, programs, images and libraries in the directory structure.

4 Common Definition Language

· An alphabetical listing of all uncommon or organization-specific terms, acronyms, abbreviations, and their meanings and definitions, to understand the Domain Description

· Define unfamiliar terms, and acronyms encountered or introduced during System Analysis and design
· Include technology implementation terms and abbreviations
 MACROBUTTON NoMacro [Click here and type Domain term]
 MACROBUTTON NoMacro [Click here and type Term description]
 MACROBUTTON NoMacro [Click here and type Domain term]
 MACROBUTTON NoMacro [Click here and type Term description]
Appendix

As applicable, each appendix shall be referenced in the main body of the document where the data would normally have been provided.

A. Reference

Provide supplementary data such as algorithm descriptions, alternative procedures, tabular data, or other document excerpts from technical publications, etc…

 MACROBUTTON NoMacro [Click here and type]
B. Vendor documents

Provide information, technical specification sheets on the COTS products used

· Describe/refine domain or application independent components

· Frameworks

· Components

· Class Libraries

 MACROBUTTON NoMacro [Click here and type]
� MACROBUTTON NoMacro [Team members]�

