

### Planning and Control of Space Robotic Systems on Orbit

#### **Evangelos Papadopoulos and Ioannis Tortopidis**

Control Systems Laboratory Department of Mechanical Engineering National Technical University of Athens



### **Motivation**

- Space (on-orbit tasks)
  - Hazardous or physically impossible
  - Very costly safety support systems
- A solution: Space robots
- Unique Problems
  - No fixed-base
  - Base-manipulator coupling





#### Free-floating Space Robots - 1

- Satellite with one or more manipulators
- Free-floating => Base thrusters do not operate.
- A space robot with an N-dof manipulator has N+6 dof.
- N manipulator dof are actuated.
- Underactuated system.
- Kinematics and dynamics reduced to N equations using momentum equations.



#### Free-floating Space Robots - 2

• Use reduced kinematics and dynamics (N dof)

 Non-integrable angular momentum conservation must be appended

Nonlonomic behavior:
 Spacecraft attitude = f(manipulator joint-space path)



#### Free-floating Robots Planning

- Can we control a spacecraft's attitude & endeffector position using manipulator motions only?
  - Hard question
  - Astronauts, cats
  - Joint space motions
  - Cartesian space motions & dynamic singularities





## **Dynamic Singularities - 1**

#### • At a dynamic singularity (shown here)

- Base motion counteracts endeffector motion
- Motion dofs are lost
- Cartesian
  location
  singularity is path
  dependent
- All control algorithms fail there.





## **Dynamic Singularities - 2**

- Move from A to D on a straight line
  - Use a Transpose Jacobian algorithm
  - End-effector moves up to point B
  - At B, a dynamic singularity occurs
  - End-effector moves to point C
  - Cannot recover (Null space)
  - Other algorithms would fail there.





# **Point to Point Control: Early Solution**

• Find a simple path, if any, that will take the end-effector to a desired point, avoiding dynamic singularities

#### **Cyclical Motions**

- A->C in PIW, record attitude
- D->C in PIW, record attitude
- Small cyclical motions to match attitudes (Lie)
- Inexact computation for number of required cycles
- Time consuming & not straightforward





### **Problem Statement**

- Find a simple path, if any, that will take the space robot to a desired configuration
  - in prescribed time,
  - without small cyclical motions,
  - with smooth trajectories, torques,
  - using the actuated manipulator only.





# **Methodology Outline**

- The key idea is to use high order polynomials as arguments in cosines.
- The initial problem is converted to one of satisfying the motion integrals.
- The configuration accessibility is *drastically extended*.
- Free parameters are determined by optimization techniques.
- At least one path can be obtained, provided that the desired change in configuration lies between physically permissible limits.



#### **Attitude Permissible Bounds**

• A change in manipulator configuration causes a bounded change in base attitude  $\Delta \theta_0$ 

$$d\theta_0 = -\frac{(D_1 + D_2)}{D} dq_1 - \frac{D_2}{D} dq_2 \triangleq g_1(\mathbf{q}) dq_1 + g_2(\mathbf{q}) dq_2$$
$$\Delta \theta_0 = \int g_1(\mathbf{q}) dq_1 + \int g_2(\mathbf{q}) dq_2 \triangleq \Delta \theta_{01} + \Delta \theta_{02}$$

where  $g_1, g_2$  are bounded functions of **q**.

• Bounds for base attitude change are computed

$$\Delta heta_{_{0,\min}} < \Delta heta_{_{0}} < \Delta heta_{_{0,\max}}$$

• If  $\Delta \theta_0$  outside the computed range, *no path* exists.



### **Kinematics - 1**

- Base attitude described using ZYX Euler angles (Yaw-Pitch-Roll)  $\boldsymbol{\psi}_0 = \begin{bmatrix} \theta_1 & \theta_2 & \theta_2 \end{bmatrix}^T$
- Euler Angle rates and angular velocity

$$\dot{\boldsymbol{\psi}}_{0} = \mathbf{E}^{-1}(\boldsymbol{\psi}_{0})^{\mathbf{0}}\boldsymbol{\omega}_{\mathbf{0}} = rac{1}{c_{2}} \begin{bmatrix} 0 & s_{3} & c_{3} \\ 0 & c_{2}c_{3} & -c_{2}s_{3} \\ c_{2} & s_{2}s_{3} & s_{2}c_{3} \end{bmatrix}^{\mathbf{0}}\boldsymbol{\omega}_{\mathbf{0}}$$

Q

• Manipulator configuration



#### Kinematics - 2

• End-effector location/orientation a function of base attitude and q

• Cartesian and joint space problem are now equivalent

Joint space planning NOT subject to dynamic singularities!

• Therefore, plan in joint space.





- Zero external forces and moments
- N Equations of motion

 $\mathbf{H}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) = \boldsymbol{\tau}$ 

Angular momentum

$${}^{\mathrm{D}}\boldsymbol{\omega}_{0}=\underbrace{-{}^{0}\mathrm{D}^{-1}(\mathbf{q}){}^{0}\mathrm{D}_{\mathbf{q}}(\mathbf{q})}_{\mathbf{F}_{1}(\mathbf{q})}\dot{\mathbf{q}}$$



- Angular momentum (rewritten)  $\dot{\psi}_0 = \mathbf{E}^{-1}(\boldsymbol{\psi}_0)\mathbf{F}_1(\mathbf{q})\dot{\mathbf{q}}$
- Path = ?:  $(\psi_0^{in}, \mathbf{q}^{in}) \Rightarrow (\psi_0^{fin}, \mathbf{q}^{fin})$ by actuating manipulator joints only.
- Let:  $q_i = q_i(t, \mathbf{b}_i)$ ,  $\mathbf{b}_i((k_i + 1) \times 1)$ ,  $i = 1, \dots, N$ polynomials of order  $k_i$
- Free parameters:  $n_f = (k_1 + k_2 + \dots + k_N + N)$ (for N-dof manipulator)

ICRA '08 Space Robotics Workshops (Orbital Robotics)



- Min #Constraints:  $n_c \ge 6N + 3$ 
  - Six per joint (for initial final position, and zero initial final velocities & accelerations)
  - Plus at least three, for the integrals of motion (the angular momentum conservation equation in three axes)
- Since it must be:  $n_f \ge n_c$  we have

$$(k_1 + k_2 + \dots + k_N) \ge 5N + 3$$
  
 $k_i \ge 5, (i = 1, \dots, N)$ 



- Let  $\mathbf{b} \in \mathbb{R}^k$  the vector containing the remaining free parameters for all  $\mathbf{b}_i$   $(i = 1, \dots, N)$ , after boundary conditions for all joints are satisfied.
- Then we can write  $\mathbf{q} = \mathbf{q}(t, \mathbf{b})$  and  $\dot{\boldsymbol{\psi}}_0 = \mathbf{F}(\boldsymbol{\psi}_0, \mathbf{b}, t)$
- Free parameters should be at least three, i.e.  $(k \ge 3)$  and satisfy the integrals of motion, i.e.

 $oldsymbol{\psi}_0^{fin}(\mathbf{b}) = oldsymbol{\psi}_0^{fin}(des), or$  $\mathbf{h}(\mathbf{b}) \triangleq oldsymbol{\psi}_0^{fin}(\mathbf{b}) - oldsymbol{\psi}_0^{fin}(des) = \mathbf{0}$ 

The problem reduces to determining the unknown vector b, numerically.



• If  $k \ge 3$  the vector **b**, is determined using optimization techniques, as

 $|\mathbf{b}| \rightarrow \min : \mathbf{h}(\mathbf{b}) = \mathbf{0}$ 

- Even for k = 3 the problem may have multiple solutions (i.e. paths achieving the double goal).
- Approach always yields a path, if the desired change in attitude lies between physically permissible bounds.



## **Discussion on Planning - 1**

 We are mostly interested in finding solution(s) satisfying the equality constraints, rather than finding the global minimum for b.

#### Additional requirements, i.e.

- Attitude change maximization
- Joint limits
- Obstacle avoidance

can be achieved, by adding more freedom to the endpoint path, via the use of higher order polynomials for one or more joints.



## **Discussion on Planning - 2**

- With joint-space trajectories determined, the base attitude is given by integrating  $\dot{\psi}_0 = \mathbf{F}(\psi_0, \mathbf{b}, t)$
- Initial and final velocities and accelerations of  $\psi_0$  are necessarily zero
- Since the path is defined directly in the joint space, it is always feasible and will never be subject to Dynamic Singularities problems



#### **Planar Example**

- Angular momentum  $D_0(\mathbf{q}) d\theta_0 + D_1(\mathbf{q}) d\theta_1 + D_2(\mathbf{q}) d\theta_2 = 0$
- End-point location  $x_E = a \cos \theta_0 + b \cos \theta_1 + c \cos \theta_2$

 $y_E = a \sin \theta_0 + b \sin \theta_1 + c \sin \theta_2$ 



Manipulator

#### • System parameters

ICR

| Body                                            | l <sub>i</sub> (m) | r <sub>i</sub> (m) | m <sub>i</sub> (Kg) | l <sub>i</sub> (Kg.m²) |  |
|-------------------------------------------------|--------------------|--------------------|---------------------|------------------------|--|
| 0                                               | 1.0                | 0.5                | 400                 | 66.667                 |  |
| 1                                               | 0.5                | 0.5                | 40                  | 3.33                   |  |
| 2                                               | 0.5                | 0.5                | 30                  | 2.5                    |  |
| '08 Space Robotics Workshops (Orbital Robotics) |                    |                    |                     |                        |  |

 $x_{\rm E}, y_{\rm E}$ 



## **2D: New System Configuration - 1**

 $\begin{array}{l} (\theta_0, x_E, y_E)^{in} = (-50^\circ, 1.53m, 0.96m) \xrightarrow{desired} (\theta_0, x_E, y_E)^{fin} = (0^\circ, 1.71m, -0.29m) \\ (\Delta q_1, \Delta q_2) = (-140.0^\circ, 60.0^\circ), \ \Delta \theta_0 \in (1.4^\circ, 72.2^\circ) \\ \Delta \theta_0^{des} = 50^\circ \colon k_1 = 5, \ k_2 = 6 \implies Infinite \ solutions \ for \ b_{26}(free).t = 10s. \end{array}$ 

 Using optimization, minimum b<sub>26</sub> is defined, yielding the shortest path, as shown





## 2D: New System Configuration - 2

Torque1 (N m)

-2

0

#### Configuration history



• Actuator torques





#### **Planning & Control**

 Moving to a new prescribed configuration with two controls



 Moving to a new point, keeping the orientation constant







### **Spatial Example**

- Base has 6-dof
- 3D manipulator has 3 actuated links (3 dof)
- Total 9 dof



TABLE 2. Spatial System Parameters

| Body | $l_i [m]$ | $r_i [m]$ | $m_i \ [kg]$ | $[I_{_{xx}},I_{_{yy}},I_{_{zz}}\;[kgm^2]$ |
|------|-----------|-----------|--------------|-------------------------------------------|
| 0    | 0.5       | 0.5       | 400.0        | 66.7, 66.7, 66.7                          |
| 1    | 0.5       | 0.5       | 30.0         | 0, 2.5, 2.5                               |
| 2    | 0.5       | 0.5       | 30.0         | 0, 2.5, 2.5                               |
| 3    | 0.5       | 0.5       | 20.0         | 0, 1.7, 1.7                               |

ICRA '08 Space Robotics Workshops (Orbital Robotics)



## **3D: New Endpoint, Same Attitude**

 $egin{aligned} m{\psi}_0^{fin} &= m{\psi}_0^{in} \ & (q_1, q_2, q_3)^{in} &= (20, 30, 30)^o & \stackrel{desired}{\longrightarrow} (q_1, q_2, q_3)^{fin} &= (0, 0, 0)^o \end{aligned}$ 

Joint trajectories and resulting base attitude (for  $k_1 = 7, k_2 = 6, k_3 = 6$ )





# Space Robot Simulator @ NTUA

- Robotic swarms, debris capture, assembly & maintenance tasks
- Two 2 dof manipulators
- 5 µm gap airbearing technology
- Thrust provided by PWM operated solenoid valves
- Fully autonomous, WiFi
- Optoelectronics, encoders, camera sensing
- QNX RTOS @ PC104 deck





### Conclusions

- Developed point-to-point planning methods for controlling both base attitude and end-effector location
- The key idea is to use high order polynomials (as arguments in cosines), which drastically extend final configuration accessibility
- Optimization methods allow for easy determination of free parameters
- This approach leads always to a path, provided that the desired change in configuration lies between physically permissible limits
- System smoothly driven to desired configurations in prescribed time