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The Programming and Training of a
Multitasking Sensory Motor Controlled EVA-Robot
Operating In a Zero-g Environment

by Alan Rosen and David B. Rosen

1. INTRODUCTION

This presentation is about the programming and training of a
multi-tasking robotic system designed for zero-g, EVA-loco-
motion, inspection, maintenance, and repair functions. The
zero-g EVA-robotic system is based on a fully designed mul-
titasking system that has been described in the Neural
Network Journal and Springer’s LNCS [1], [2].

[1] Sensory Motor Control by Reverse Engineering

Biological Modalities"
http://www.mcon.org/submtd/nnj_nng1886_121507.pdf
[2] An Electromechanical Neural Network Model of the

Human Body and Brain
http://www.mcon.org/submtd/ICON_IP_RosenRosen71506

web.pdf

To illustrate the affect of the newly-designed EVA-robot on
the programming-training of the brain-controller, a conceptu-
al design of an EVA-robot is presented. The equipment com-
partment of the EVA-robot is modeled after the AWIMR
Project [3], and 2-arms, 4-legs and 2-cameras are modeled
after the Neuronal Correlate of Modalities (NCM)-robot [1],
(2], [4].

[3] Wagner, R. & Lane, H. (2007) Lessons Learned on the
AWIMR Project. Presented at the Space Robotics
Workshop, ICRA. April 14, 2007.

[4] “A robotic optical circuit that generates 3D-visual
images: a robotic solution to the inverse optics problem of
visual seeing,” published in the Neural network Journal and
available for viewing at

http://www.mcon.org/submtd/nnj_nng1911_121507.pdf

1.1 The EVA-Robotic Body

Figure 1 shows the conceptual design of the EVA-robot mod-
eled after the NGC-AWIMR project and the NCM robot. The
robotic motion of the arms, legs, and cameras are facilitated
by the 40-joints system shown in the Figure. The motion of
all 40-endjoints are controlled simultaneously by the EVA-
robotic controller. Quadrilateral symmetry has been
designed into the 3D-visual sensors and the 2 robotic arms
with respect to each pair of 2-adjacent legs in the 4-legged
system. The robotic torso, mounted on a rotating platform
located on top of the NGC-AWIMR compartment, may take
on any of 4-positions symmetrically located between each
pair of adjacent legs mounted on the same compartment. In
each of the 4-quadrilaterally symmetrical regions, the robot-
ic torso may be associated with the 2-adjacent legs, 2-arms

mounted on the torso, the robotic controller mounted on the
torso and the 2-camera visual system mounted on the con-
troller. The robotic system in each quadrilaterally symmetri-
cal region is similar to the NCM-multitasking robotic system
described in [1] and [2].

1.2 The Sensors

In each of the 4-quadrilaterally symmetrical regions of the
EVA-robot the tactile sensors and the 3D-visual sensors are
identical to those described in the Neural network Journal [4]
and [1]. These sensors are configured to form the tactile and
visual internal coordinates (located within the controller) that
are a reflection of the robotic body and the visual space in
which the robot is operating.
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Figure 1. The conceptual design of the EVA-robot modeled after the
NGC-AWIMR project and the NCM robot.

1.2.1 The Tactile Sensors

Made up of fiber-embedded pressure transducers, the tactile
sensors are uniformly distributed throughout the EVA-robotic
body. These sensors detect any physical contact taking
place on the robotic body and measure the reaction forces
exerted on the limbs during locomotion, and hand manipula-
tion tasks. In each of the 4-quadrilaterally symmetrical
regions of the EVA-robotic body, the tactile sensors that facil-
itate the design of the coordinates of the robotic self and the
near space around the robotic self are identical in all
respects to the sensors described in “Sensorimotor control
by reverse engineering the biological modalities: reverse
engineering the human body and brain” published in the
Neural network journal and available for viewing at:
http://www.mcon.org/submtd/nnj_nng1866_121506.pdf
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Coordinate Frames in the 3-D Space in Which the Robot is Operating

S-self

S3-self The fixed location of mechanoreceptors distributed on the total robotic body
S3-near A set of indexed locations that cover the space surrounding the body
S3-space Defined as S3-self plus S3-near
S3-end joint | Indexed location in a sub-space defined by the range of motion in an end-joint in the S3-near space

Coordinate Frames Within the Controller

A reflection of the S3-self space. Indexed receiving nerons within the controller that define the total robotic

body.
S-near A reflection of the S3-near space. Indexed receiving nerons that define the space surrounding the robotic
body.
S-space Defined as S-self plus S-near
S-end joint A reflection of S3-end joint space. Indexed locations in a sub-space defined by the range of motion of the

end-joint in the s-near space (in a Nodal Map Module within the controller).

Table 1. Mathematical designation of the various coordinate spaces.

1.2.2 The Visual Sensors

In each of the 4-quadrilaterally symmetrical regions of the
EVA-robotic body, the 3D-visual sensors have been
designed to be similar in all respects to the sensors
described in “A robotic optical circuit that generates 3D-visu-
al images: a robotic solution to the inverse optics problem of
visual seeing,” published in the Neural network Journal [4]
and available for viewing at:
http://www.mcon.org/submtd/nnj_nng1911_121507.pdf

1.3 Quadrilateral symmetry

The quadrilaterally symmetrical system is advantageous for
4 reasons:

1. Programming the self location and identification func-
tions, required in order to define the external coordi-
nate frame within the controller, need be performed for
only one of the 4 quadrants.

2. The design of the binocular visual system and the cali-
bration procedure for one quadrant is identical to the
calibration procedure described in the Neural network
Journal [4]. (It is fully applicable to each of the remain-
ing 3-quadrants).

3. The training-programming procedure performed in any
one quadrant is applicable to the programming per-
formed on each of the 3 remaining quadrants.

4. The EVA-robot has a 360 degree surveillance capabil-
ity and may perform locomotive functions in any one of
8 directions without re-orienting the equipment com-
partment.

2. THE EVA-ROBOTIC CONTROLLER

The EVA-robotic controller is a modified NCM-controller [1],
[2], re-configured only to conform to the range of motion of all
the moveable parts of the robot in the coordinate frame in
which the EVA robot is operating. The coordinate frames
within the controller, which are reflections of the coordinate
frames in the 3D-space in which the robot is operating, are
shown in table 1. In the following sections the various coor-
dinate spaces that are reflected into the robotic controller will
be referred to by the mathematical designators given in table
1. A block diagram of the EVA-robotic controller is shown in
Figure 2.

pq Phoneme Robotic Arms
q-field Nodal Map and Hands
(vibrating diaphrams) >
Auditory Signal Camera Wheels = = =
Platform and Legs
> TASK SEQUENCE CONTROL
SELECTOR STEPPER SIGNAL
Self MODULE MODULE OUTPUT
qg-field .
Visual »| Location & ID
CCD Array
NODAL MAPS |«
g-field Phoneme Platform Arm Wheel
SOMATO SENSORY Generator ~ Rotation Hand  Leg Control
control Lens Control
Pressure Transducers Signal Control
| p-FIELD CONTROL SIGNALS

Figure 2. A hierarchical array of modules. All the Nodal Map Modules, Task Selector Modules, Sequence Stepper Modules and Control Signal-
output Modules (associated with each joint in the body), operate simultaneously during each frame period.
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2.1 The Operation of the EVA-Robotic Controller

The robotic controller is made up of modules that operate in
the various endjoint subspaces shown in table 1.

2.1.1 The tactile neural networks

A set of neural net works located within the controller are
used to determine the indexed coordinate location of the
robotic self in the S-self space, and the indexed coordinate
location of flailing limbs in the S-near space. The origin of the
coordinates, identified as the center of Mass (CM) of the sys-
tem, is located on top of the NGC-AWIMR platform, at the
center of the torso-yoke shown in Figure 1.

2.1.2 The Nodal Map Modules (NMM)

ANMM is made up of an array of microprocessor based stor-
age slots known as nodes. The set of nodes that define the
S-space within the controller, are a reflection of the coordi-
nates of the 3D-space, the S3 space, in which the robot is
operating. Each storage slot-node represents an indexed
location of a coordinate located in the 3D-space, and is used
to store g-input signals and a set of p-output signals, known
as table line entries. The symbol q is used to denote either
tactile or visual sensory signal inputs. The symbol p denotes
a control signal emitted from the controller, that may be
applied to any motor-joint in order to generate a motor
action, generally a single nodal transition of the endjoint.

2.1.3 The qi-position of an endjoint in each
of the 40-Nodal Map Modules

The EVA robotic system is made up of 40-NMMs, with one
NMM assigned to each joint in the robotic system.The posi-
tion of the end of each limb with respect to the position of the
joint is called the gi-position of the endlimb. In the 40-joint
NMM-system, 40 gi-positions are recorded, one position in
each NMM (The 3D-position of the end joint in the S3-end-
joint space is reflected to an indexed storage slot in the S-
endjoint space within the controller). As the end-joint moves
in the S3-endjoint space, the gi position is recorded via an
inverse kinematics intermediate circuit, onto the exact
indexed locations of the S-endjoint space. The number of
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nodes present in the S-endjoint space is determined by the
range of motion of the endjoint in the S3 endjoint space.
There are 2-additional input signals that may be stored with-
in the nodes present in any NMM. The first is a Task-initiat-
ing Trigger (TT), an activation signal related to the pre-
planned final position or the goal, g-final, of the controlled
trajectory of motion of g-initial. That is, the robotic controller
may be required to generate a controlled trajectory of motion
of any given endjoint from g-initial to g-final. The second
parameter is the magnitude of the sensory signal stored at
any indexed location. For example a tactile signal that forms
a TT may also store the magnitude of the pressure on any
given pressure transducer, as well as its location. Visual
sensors may store all the parameters of the photometric sig-
nal in an indexed storage slot and a photometric pattern,
stored in an array of indexed locations, may be detected
either as TT-patterns or obstacle avoidance TT-patterns.

2.2 Inverse kinematics and the intermediate
circuit for determining gi-positions:
Primary and secondary NMMs.

The primary NMMs are associated with free-ending joints.
These are joints where the gi location of the endjoint inter-
acts only with the environment. The secondary NMMs are
associated with intermediate joints. These are joints where
the gi location of the intermediate joint interacts with another
joint in addition to the environment. The distinction between
primary and secondary NMMs is important in the training
process. Generally the free-ending joints, associated with
primary NMMs, are trained explicitly to move the free-ending
joint to some pre-determined final position, gf-position. All
the intermediate joints, the secondary NMMs, are trained
implicitly by inverse kinematics, to take on intermediate qi-
positions that are consistent with the trained primary qi to gf-
location. The position of the free-ending finger endjoint with
respect to the center of mass of the equipment compartment
is shown in Table 2. For example, the position of the index
finger endjoint relative to the first index joint, shown in Figure
1, is recorded in the primary NMM. Simultaneously, the posi-
tions of all the intermediate joint-qi’s are recorded in the sec-
ondary NMMs shown in Table 2.

Free Ending and Intermediate End-Joints in the Nodal Map Modules

Free Ending Finger Joint in the Primary NMM

. gi-indexed location of the finger end joint with respect to the first joint

Intermediate Endjoints Positions in the Secondary NMM

. The position of the second joint with respect to the wrist

. The position of the wrist with respect to the elbow

. The position of the elbow with respect to the shoulder

. The position of the shoulder with respect to the torso

. The orientation of the torso with respect the the center of mass at the torso pivot (just above the platform)

Note: The torso can take on 3-positions with respect to the center of mass of the system: A folded position (zero degrees), mid 45
degree orientation and a verticle position (90 degrees) Thus, the inverse kinematics of the arm positions are dependant of the
torso position. However, the foot postions my be independant of the torso postion, and depend only on the position of each leg
with respect to the equipment platform (as determined by the the postion of the center of mass).

Table 2. Location of the endjoints in the primary and secondary Nodal Map Modules. The angular displacements of the motors at each joint
determines the secondary location of the endjoint in the secondary Nodal Map Modules.

Rosen & Rosen ©2008 MCon Inc. All rights reserved



2.3 Tracking the gi-position of the free ending
joint: gi in the primary and secondary NMMs

In order to connect a signal originating at a g-initial position
at the tip of a robotic finger to its corresponding point in the
near space of the internal nodal map, one must convert the
signals received from a set of angle measuring transducers
at all the intermediate joints into the qi position which is
stored into the corresponding storage-slot (indexed location)
within the controller. In the EVA-robotic model the motion of
each joint may have a maximum of 3-degrees of freedom. If
we assume one motor per degree of freedom, then an angle
measuring transducer may be used to measure the torque-
generated angular displacement at the shaft of each motor.
The 3-angular displacements at each joint determine the
position of the robotic endjoint with respect to that joint. The
position of the tip of the finger is a function of the angular dis-
placements of all the intermediate joints between the tip of
the finger and the Center of Mass of the EVA robot (see
Table 2). The intermediate joint-J position is a function of all
the angular displacements at all the joints between the inter-
mediate joint-J and the center of mass of the system. Table
2 shows the corresponding positions of secondary interme-
diate joints as a function of the angular displacements of all
the joints between robotic finger and the center of mass of
the system.

In the design of the robotic arm, an intermediate circuit,
associated with each joint on the robotic body, is required in
order to convert all the angle measurements to a g-initial
location in the internal coordinate frame. The intermediate
circuit then transmits the g-initial signals to the indexed nodal
locations in the S-intermediate joint space.

A complete and separate intermediate circuit is associat-
ed with each robotic joint. The range of motion of each end
limb, and the possible g-initial locations covered by the end
limb depend on the number of joints between the end limb
and the center of mass of the system. For example, Figure 3
shows a robotic limb end-joint that defines a conical region
with apex at the hip. The length of the cone is determined by
the total length of the leg from the hip to the foot, and coni-
cal angle is determined by the angular range of motion of the
leg with respect to the hip. The robotic elbow end-joint cov-
ers a smaller conical region that is determined by the length
of the upper arm from the shoulder to the elbow. The angu-
lar inputs from the angle measuring transducers located at all
intermediate joints between the end-joint and the center of
mass are applied to the intermediate circuit that is associat-
ed with the end-joint. The g-initial position of a robotic end-
joint is a function of all the inverse kinematics angular posi-
tions of all the intermediate circuit between the end joint and
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Figure 3. The total angular displacement of each end
joint with respect to the joint determines the nodal map-
ping space called the S3-end joint space.

E e

the center of mass of the system [5].

In a fully designed system, the designer of the system
may measure, calculate, or test (by inverse kinematics tech-
niques) the angular positions of all intermediate joints, when
the robotic finger end-joint is moved through the itch-goal
directed trajectory. Thus all the intermediate circuits and
positions of end-joint in the associated topographic map-
pings may be simultaneously determined and programmed
in the process of moving the primary end-joint.

2.4 The Task Selector Module (TSM)

There are 2-TSM’s in the EVA-robotic system; one associat-
ed with the tactile sensory system, the itch scratch and colli-
sion system, and the other associated with the visual system.
The tactile TSM, shown in Figure 2, generates the g-final
goal location (The “itch” location in [1]) and motivates the
robot to perform a “scratch’-type trajectory aimed at the
“itch”-point. For training purposes, the g-final “itch” location
may be artificially generated by the TSM and applied to the
appropriate g-initial-defined Nodal Map Module.

2.5 The Sequence Stepper Module (SSM)

There are 40 SSM’s in the EVA-robotic system. The SSM is
a scanning circuit that scans the NMM region between qgi and
gf and generates a sequence of p-values taken from the val-
ues stored in the indexed locations between qi and gf. The
TSM-activated g-final “itch”-location becomes the Task-initi-
ating Trigger (TT) that activates the SSM to examine the
region in the NMM, between g-initial and g-final. The SSM
then transmit the sequence of pg-values to the Control-sig-
nal Output Module

2.6 The Control-signal Output Module (COM)

There are 40-COMs in the EVA-robotic system, one COM
for each joint in the EVA-robot. During each frame period all
40 joints may be controlled by the 40-COMs. The COM con-
trols the speed of motion of a robotic part. During each frame
period, the output of the SSM that represents the pre-
planned trajectory of motion between qi and gf, is applied to
the COM. If there are no obstacles in the pre-planned trajec-
tory, then one and only one, namely the first control signal of
the sequence may be transmitted to the joint-motor during
that frame period. The speed of motion, including the possi-
bility of a pause, is determined by the COM. If the pre-
planned trajectory is to be implemented at maximum speed,
then the COM will transmit to the motors the pre-planned
sequence of p1....pn at the frame rate of one nodal transition
per frame period, until n frames have elapsed and the trajec-
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Figure 4. A pictorial representation of a Iaboratory setup used to train an "itch-scratch robot. The robot is pictured with three trajectories of

motion: scratching the elbow with the left hand while extending the right arm.

tory of motion from qi to gf is implemented. Generally, in
addition to priority shifts to other COMs, the speed of motion
determined by the COM depends on the number of re-plan-
ning shifts that may take place in the pre-planned trajectory,
during the progression from qi to gf.

3. TRAINING AND PROGRAMMING THE EVA-
ROBOTIC SYSTEM

Training the EVA-robotic system is a 4-step
process:

a) Training-programming the nodes of each NMM with
the corrected set of p-values

b) Training all NMM with self location and identifica-
tion. The robot must have motion-knowledge of the location
of all parts of the body and flailing limbs relative to any and
every other part of the robotic body and limbs.

c) Training the visual near space for reaching and
touching spots of light

d) Hierarchical Task Diagram (HTD)-training:

d1. Training the tactile near space for reaching,
touching, grasping and blind ambulation in a 1g
environment (with visual TTs)

d2. Simple Hierarchical Task Diagram (HTD) multi-
tasking: 1) Goal directed ambulating with visual
obstacle avoidance, 2) Goal directed hand

manipulation: picking up and setting down
objects. 3) Goal directed ambulation in a zero g
environment,

d3. HTD-multitasking: Surveillance, inspection, sim-
ple repairs and replacement of parts.
A pictorial representation of a laboratory set-up to train the
itch-scratch robot is shown in Figure 4 The robot is attached
at its center of mass, and all itch-scratch trajectories are per-
formed relative to the center of mass.

3.1 Training Each Nodal Map Module

Training each Nodal Map Module is accomplished by use of
a modified “Hebbian” learning rule [5] Figure 5 is a training
flow diagram of the p-vectors and g-vectors through the con-
troller during one frame period (40-Nodal Maps Modules are
trained simultaneously during each frame period). Two paths
are shown in the figure, a training path and an operational
path. Training is performed on the Nodal Map Modules and
on the Sequence Stepper Modules. The Nodal Map training
consists of the tabular assignment of a correct set of p-value-
table line entries assigned to each nodal location of the
Nodal Map Module. The correct p-value, a table-line-entry, is
that p-signal that causes an exact motor displacement of a
robotic part, to an adjacent node. At each node there are 27-
p signal transitions to adjacent nodes in a three dimensional
nodal map, and 8-p signal transitions to adjacent nodes in a
two dimensional nodal map. A More detailed description of
the training of all the nodes of an RRC-circuit, to perform a

Rosen & Rosen ©2008 MCon Inc. All rights reserved
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Figure 5. Training the nodal map module. Two paths are shown in the figure, a training path and an operational path. The set of p-signals are
trained repeatedly until the CFl is less than delta. When CFI < 9, the p-signal is assigned to a node in a Nodal Map Module as a table-line entry.
A pictorial representation of the training path flow is also shown in Figure 5.

complete set of “itch-scratch” motor control tasks is
described in an article titled “The Engineering Design of a
NCC-circuit for the Sensory-motor Control of a Robotic Arm”
[5].

3.1.1 The Task Selector Module
and the Sequence Stepper Module

The Task Selector Module (TSM) generates the g-final “itch”
location and motivates the robot to perform a “scratch” action
aimed at the “itch”-point. For training purposes, the g-final
“itch” location may be artificially generated by the TSM and
applied to the appropriate g-initial-defined Nodal Map
Module. The TSM-activated g-final “itch”-location becomes a
Task-initiating Trigger (TT) that activates the Sequence
Stepper Module to examine the region in the Nodal Map
Module, between g-initial and g-final, and select a pre-
planned trajectory between g-initial and g-final.

3.1.2 The Corrected Set of p-values
Assigned to Each Nodal Map Module

The method of selecting the correct set of control signals (p-
values for all the motors associated with the 40-robotic joints)
required to move a robotic part from g-initial to g-final, is
shown in Figure 5. The p-vector assigned to each node of
each Nodal Map Module is first calculated, estimated and
tested by the designer (the magnitude is designed to gener-
ate an exact transition to an adjacent node, and the direc-
tions, often determined by inverse kinematics, are calculated
for each of the end-joints). Figure 5 shows that the estimat-
ed p-values are then corrected repeatedly until the correction
factor increment (CFI<d) approaches zero.

The correct table-line p-value at the initial node is that
value that generates an exact displacement from the initial
node at g-initial to the adjacent node at g-final. Correction of
the table line entry p-value proceeds by noting the displace-
ment error generated by the set of p-initial and applying a
correction factor so that the set of p-initial (corrected) leads

to an exact transition to the final node defined by g-final (see
Figure 5).

A Nodal Map Module is said to be “trained” if each nodal
table, assigned to each node, is made up of a complete set
of p-signal line entries. Each p-signal line entry causes an
exact motor displacement to an adjacent external nodal posi-
tion. The set of table line entries assigned to each nodal
table consists of all the p-signals that lead to exact transi-
tions to all adjacent nodal positions.

3.2 The Training Procedure.
Self Location and Identification

In order to train the robot to perform all possible itch-scratch
trajectories, the g-final-itch point is initially selected at nodes
that are immediately adjacent to a g-initial. For each nodal
map, and for each node defined in that map, the training pro-
ceeds with the g-final location placed at distances of two,
three, four, and more nodal distances from g-initial. When all
the nodes of all the nodal maps associated with all the joints
of the robotic body are fully trained, the RRC-circuit is said to
exhibit “robotic self knowledge.” The robot may have
“learned” by this programming methodology how to move
every robotic limb towards any and every part of the robotic
body.

3.3 Training the Visual space

The visual sensory system for the EVA-robot has been
described in the Neural Network Journal and in IEEE-xplore
[41, [7], [8]. A multi-tasking robot uses its visual system as a
search engine that searches the space in the vicinity of the
robot. In order to program the robot to locate and respond to
a spot of light appearing in the FOV coordinate frame, each
spot of light (shown in Figure 6) may be viewed as a Task-
initiating Trigger (TT) activation point (similar to the itch-TTs).
The robot is trained to respond to each TT-spot of light by
means of a sensory motor controlled trajectory that is goal
directed towards the spot of light.

Rosen & Rosen ©2008 MCon Inc. All rights reserved



The total FOV-coordinate space may be defined by plac-
ing the image planes shown in Figure 6 at various conver-
gence-depths along the midline-LOS. Table 3 illustrates the
number of convergent locations that may be incorporated
into a prototype design of the EVA-robotic visual system. For
each FOV in the prototype system, the number of indexed
receiving neuron (forming coordinate points in the FOV-coor-
dinate frame) is 144,000 (24,000 CCD-sensors x6). The total
number of receiving neurons for the 18-FOVs shown in table
3 is about 2.6 million receiving neurons (144,000 x 18). Each
receiving neuron represents the location of a spot of light
located on one of the 6-image planes associated with each
FOV. Note that the indexed location of the visual receiving
neurons that make up the FOV-coordinate space, is a phys-
ically significant parameter that defines the location of the
spot of light in the FOV of the robotic system.

3.3.1 The Search Engine: Programming-teaching the
robot to locate and respond to spots of light on each
image plane. TTs and the TSM of the visual system.
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A visual multi-tasking robot with the visual system described
in Table 3, may be programmed to search for spots of light in
a region surrounding the robot. Each FOV (18-FOV in the
prototype system) may be searched by moving the point of
convergence of the two cameras from a depth of infinity to a
depth of 9 meters, 1 meter, 60, 30, 10, and 6 centimeters
(see Table 3) Programming-teaching the robot to locate and
respond to spots of light is a process of training the robot to
move its head and body to determine a FOV-midline, and
then sweep the depth of convergence from infinity to 6-cen-
timeters in front of the robot.

The search engine is used to search the external environ-
ment for Task-initiating Triggers (TTs) and obstacles that may
be present along the trajectory [2]. The Task Selector Module
(TSM) and the Sequence Stepper Module (SSM) are the pri-
mary circuit elements used to detect TTs present in the input
sensory signals.

A visual prototype robot may be trained with a single spot
of light (variable color with parameters determined photomet-
rically) similar to the ones shown in Figure 6 and 7. A spot

Number of FOV's
(18 total)

Number of
Convergent Depth
Positions per FOV
(6 depths or 6
image planes)

Number of Spots per
Image Plane

(equals no. of CCD
sensors in the arrays)

1. Torso verical- Head-O deg nod |Depth Angle
1.1 Head Odeg 6 cm 450

1.2 Head 45 deg Right 10cm 30.99

1.3 Head 45 deg Left 30cm 11.30
60cm 5.7°
100cm 3.4°
2. Torso Vertica- Head 45 deg nod [900cm 0.4°

2.1 Head O deg
2.2 Head 45 deg Right
2.3 Head 45 deg Left

3. Torso 45 deg- Head O deg nod
3.1 Head O deg
3.2 Head 45 deg Right
3.3 Head 45 deg Left

4. Torso 45 deg- Head 45 deg. Nod
4.1 Head O deg
4.2 Head 45 deg Right
4.3 Head 45 deg Left

5. Torso 90 deg- Head O deg nod
5.1 Head Odeg
5.2 Head 45 deg Right
5.3 Head 45 deg Left

6. Torso 90 deg- Head 45 deg. Nod
6.1 Head Odeg
6.2 Head 45 deg Right

2x100x120=24000
spots on each image plane

Table 3. The total visual field of view coordinate space is calibrated with tactile indexed locations in the Nodal Map modules.
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lens:
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. 15 cm field of view
image plane
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Figure 6 Four image planes. Each plane is determined by the binocular disparity
and FOV of a 2-camera system. Each camera’s LOS converges at convergent
depths of 15, 30, 45, and 60 centimeters intersecting on the midline LOS. The FOV
and areas of the right and left camera CCD-array determine the image-areas on the
image plane. The two image-areas on the image plane of the right and left camera
are superposed and aligned so that the central portions correspond to one another
and peripheral portions are unique to the right and left camera.

of light of any color-hue at any location is identified (photo-
metrically) as a Task Initiating Trigger (TT) by the TSM. For
the prototype robot, if a TT-spot of light activates any of the
2.6 million FOV-receiving neurons, located and indexed rel-
ative to the tactile receiving neurons that define the near
space, then the sensory motor control system is trained to
generate a finger trajectory of motion that is goal directed
towards the spot of light. The training process is identical to
the process described for the tactile robotic system activated
by itch-type TTs [10], [11]. (Note that the TSM locates obsta-
cles and TT-spots of light at indexed locations of the Nodal
Map Module, and that the Sequence Stepper Module may
generate an obstacle-avoiding trajectory towards a TT-spot
of light. During each frame period, a spot of light, detected by
the Task Selector Module (TSM), is prioritized and may
become the Task-initiating Trigger (TT)-activation point in the
near space of the robot (similar to the itch-activated
mechanoreceptors used as itch-TTs to activate an itch-
scratch trajectory)).

3.3.2 The Calibration Procedure

The problem is one of calibrating the 3D-coordinate space
defined by the tactile sensors, with the 3D-image defined by
the superposed CCD-array image planes. It is a problem of
scaling the FOV-image so that it corresponds to the scale
size measured by the tactile receiving neurons in the near
space. The locations of the visual receiving neurons that cor-
respond to the tactile receiving neurons in the near space
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regions (light spots in the FOV-space ) have been described
in the previous section and are shown in Figure 7.

3.3.3 The depth of the neuron at the fixation point

The signals must be indexed or related to the sensory motor
control system of the eyes, head, body, and limbs in order to
view a 3D-image in the coordinate frame in which the system
is operating. In the NCM-system indexing of the visual neu-
rons is a function of the head and torso orientation (3 torso
orientations, plus 3 head orientations, plus z-noding orienta-
tions per torso orientation) and the convergence angle of the
opto-sensor that determines the fixation point of the converg-
ing cameras. The locations of all the receiving neurons of
each 2-binocular layers located at a given fixation point (see
Figure 6) are indexed to the 3D-neurons of the self location
and identification coordinate frame. The fixation point and
the two superposed image planes associated with it are
placed at the depth of the fixation point in the self location
and identification coordinate frame. For example, the two
image planes, shown in Figure 6 at a depth of 60 centime-
ters, are defined in Figure 7 as plane D2. The depth of the
fixation point of D2 is determined by the convergence angle
opto-sensor and may be projected to the exact indexed loca-
tion of the self location and identification coordinate frame
(the Nodal Map Module). However, only the visual fixation
point in D2 is indexed to the proper depth of the self location
and identification coordinate frame. The depth of offset spots
shown in D2 may be determined and learned by the system
by shifting the fixation point to those spots.

All the neurons of the 2-superposed image planes defined
by a fixation point are located on the 2D-surface at the cor-
responding fixation point within the controller (see layers in
Figure 7 labeled “indexed receiving neurons of the visual
coordinate frame). Only the indexed receiving neurons that

indexed receiving neurons
of visual coordinate frame

D2

convergence
angle opto-sensor

Figure 7 A visual coordinate frame within the controller. A visual coordinate frame
within the controller is formed by all the indexed receiving neurons that locate spots
of light on the image planes within a given FOV, and all FOV's designed into the sys-
tem (see Table 1). The cyclopean eye is connected to the tactile “self identification
and location”-circuit. During each frame period, the convergent angle opt-sensor
determines the convergent-depth of the image plane and the TSM transmits the
cyclopean eye data to the indexed locations (shown in the figure at plane position-
D2).
Rosen & Rosen ©2008 MCon Inc. All rights reserved



are at the fixation point will register and be analyzed so that
it exhibits the depth derived from the absolute disparity.
Nearby neurons that are offset from the fixation point are not
only non-corresponding but may represent images that are
located at large distances further or nearer than the corre-
sponding fixation point. The robot must learn, using all the
visual quos listed by Marr [12] and Poggio [13] (e.g. size,
continuity, obscuration), whether nearby neurons are located
at greater, smaller, or the same depth as the fixated depth (In
the next section, it is noted that this may correspond to learn-
ing to find nearby non-corresponding points that exhibit arti-
ficially learned correspondence. The only way the robot has
of checking the depth of a nearby point is to converge and
fixate on the nearby point and thereby determine the depth
of the nearby spots. Once the depth of nearby points is
established, by fixating on them, their location may be pro-
jected to the appropriate indexed locations of the Nodal Map
Module. The sensorimotor control system of the robot then
has the capability to move all its body and limbs relative to
the location of the visual image in the indexed visual coordi-
nate frame. It has self location and identification knowledge
not only with respect to all body parts, but also with respect
to the observed object located in the common coordinate
frame.

3.3.4 The depth of neurons that are offset
from the fixation point

An internal retinotopic depth collective modality may be
formed in the microprocessor based portion of the controller.
During each frame period, the internal depth collective is
formed by following the design of Marr and Poggio [13] for a
neural network that learns to determine retinotopic depth
based on 10 photometric visual queues applied to the sys-
tem. The process includes a) fixating on the offset neurons,
b) determining their disparity depth, c) correlating their dis-
parity depth with any of the 10-visual quos specified by Marr
and Poggio [13], d) depending on either the correlated visu-
al quo or the measured disparity depth, the offset neurons
are now indexed into a single disparity depth selective neu-
ron, located on the newly formed image plane of a retinotopic
depth collective modality, and e) This newly formed retino-
topic set of disparity depth selective neurons, located on a
retinotopic depth-collective modality, may now be indexed to
the correct corresponding 3D-position of the self location and
identification coordinate frame (the indexed locations of the
tactile 3D- coordinate frame in the Nodal Map Module).

The internal depth collective is designed to learn the cor-
rect depth-location of offset neurons by measuring visual
quos detected during a given frame period, rather than shift-
ing the fixation point to each offset neuron in order to deter-
mine its depth-location. Note that in the engineered 3D-visu-
al-system, if a retinotopic depth collective modality is formed
, then all the data necessary to form a 3D-image which is cal-
ibrated with the 3D-tactile near space coordinate frame now
resides in the Nodal Map Modules. This data may be corre-
lated with sensorimotor control that includes obstacle avoid-
ance as well as detection of objects, shapes, forms, color,
and motion that may be identified as visual-TT-patterns that
may initiate the sensory motor control tasks of a multi-task-
ing system.

3.3.5 Training/programming the system
to avoid obstacles
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Obstacle avoidance is one of the primary characteristics of
locomotive behavior. The visual g-field data may be used to
locate obstacles in the Nodal Map Module that mirrors the
Euclidean space in which the robot is operating. In the fol-
lowing discussion it is assumed that both visual-q field data
and somatosensory g-field data is applied to the topograph-
ic ordering of neurons of the Nodal Map Module. The visual-
q field sensors (cameras) and somatosensory g-field sen-
sors (tactile) are always active, while the robot performs the
tasks that it is designed to perform. Therefore, the robot is
constantly monitoring the visual and tactile g-field signals
with respect to the “self” nodal map, and is sensitive to visu-
al and tactile stimulation. The monitoring function is per-
formed by the Nodal Map Module, upon which the visual and
tactile g-field signals are impressed. This nodal map, located
within the controller, may be viewed as a recording monitor
of visual and tactile g-field data, since it mirrors the data
present in the 3-dimensional Euclidean space surrounding
the robot.

A pictorial representation of a laboratory set-up to train the
itch-scratch robot for obstacle avoidance is shown in Figure
4. The robot is attached to its center of mass, and all itch-
scratch trajectories are performed relative to the center of
mass. In the engineered 3D-visual system, all the data nec-
essary to form a 3D-image of the obstacle resides in the
Nodal Map Modules that represent the 3D-tactile coordinate
frame in which the EVA-robot is operating. The internal depth
collective, described above, may transmit the photometric
data of all detected obstacles to the indexed locations of the
Nodal Map Module. The Sequence Stepper Module then
detects those obstacles and generates a pre-planned trajec-
tory so as to avoid the photometrically detected obstacles [4],
(7], [8]-

The response of a multitasking NCM-robot is determined
by a Hierarchical Task Diagram (HTD), the top level specifi-
cation of the system, and the Task Selector Module (TSM)
that prioritizes and selects during each frame period the Task
initiating Triggers (TTs) present in the incoming signal [1].
The tasks on the HTD are activated by the TSM that may
apply the highest priority-TT to the Nodal Map Module. The
prioritized Task-initiating Triggers (TTs) are used to select the
top level tasks and the lower level subtask on the HTD. For
example, a visual, itch-NCM robot may be designed with two
top level tasks, an itch-monitoring set of tasks and a color-
hue spot-monitoring set of tasks (see section 3.3.1). Each
itch-TT is location-indexed and assigned a priority level that
is a function of the pressure applied to the mechanoreceptor.
Each color-hue spot-TT is location-indexed and assigned a
priority level that is a function of the photometric color-hue
output of the CCD-sensor (receptor). However, the priority
levels of all itch-TT are greater than the set of priority levels
assigned to the color-hue spot-TTs. When high priority itch-
type activations are absent, the robot is programmed to oper-
ate in the color-hue spot monitoring state and to discriminate
and respond to different color-hues with different TT-trajecto-
ries. If an itch activation-TT is detected by the TSM during
any frame period, the robot interrupts the color hue-discrimi-
nation task, switches into an itch-activation state, and pro-
ceeds to plan an itch-scratch trajectory aimed at the itch-
point as the goal of the trajectory. The EVA-robot is also be
programmed to avoid obstacles that may photometrically
appear along the path of any pre-planned trajectory (either
color-hue discrimination path or the itch-scratch path).

The priority levels of visual obstacles (generated by the
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Figure 8 A hierarchical task diagram.

TSM) do not change the state of the system (itch-activating
state or color-hue spot discriminating monitoring state).
Instead, the TSM transmits the photometric data of all detect-
ed obstacles via the internally generated retinotopic depth
collective, to the indexed 3D-locations of the Nodal Map
Module. The Sequence Stepper Module then detects those
obstacles and generates a pre-planned trajectory so as to
avoid the obstacle [1], [5], [9].

3.4 HTD Training:
Chunking, daisy chains and line dances

The top level specification for a multi-task robotic system is
a Hierarchical Task Diagram (HTD) that describes the tasks
that the robot is designed and programmed to perform. It
identifies the primary task objective of the robot and is the
top level programming and training specification for the sys-
tem. A hierarchical task diagram is a mechanism for decom-
posing a conceptual task-goal representation, the primary
task objective, into constituent parts. Figure 8 presents a
HTD for a generic multi-tasking robotic controller. The pri-
mary task objective at the top of the hierarchy must encom-
pass all the “trained” tasks performed by the robotic system.
The sub-tasks at the bottom of the hierarchy are simple
sequences of motor actions which are called daisy chains,
line dances or chunks. The daisy chain is a repetitive array

of simple sequences called “chunks”. A daisy chain is made
up of a large number of repeated “chunks”. A line dance, on
the other hand, is made up of preprogrammed chunks
(sequences), with each preprogrammed chunk differing from
the other preprogrammed chunks.

All tasks, shown on the HTD, must have associated with
each of them a Task-initiating Trigger (TT) and priority level
that is keyed to the task objective. The TT is a mechanism for
selecting the particular real time task that is to be performed
by the robotic system. The task selection process is per-
formed from the perceived g-field nodal mapping that is the
recording monitor of the robotic system. During normal oper-
ations of a robot, and during the training process, the g-field
is applied to the TSM, that generates the TT, that activates
the Sequence Stepper Module, that initiates a sequence of
actions that navigate the robot from a g-initial to a g-final
position.

3.4.1 Navigating through the internal coordinate
frame via the HTD

The sequential control characteristic of the robotic controller
provides a simple mechanism for “chunking” and for building
hierarchical structures (Gazzaniga, 1998, p. 386). At mid
levels of the HTD, a sequence of simple motor actions may
be “chunked” and identified as a task or sub-task, by a rep-
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Figure 9 The functional flow throughout the TSM pattern recognition circuit. The TT priority levels are programmed offline by use of the HTD.

resentation of the destination-goal of the action. The next
higher priority level, controls the “chunks” with another
sequence of motor actions that aims the “chunks” towards
another goal. Again, the representation of the goal identifies
the task as the next higher level of action. For example, the
sub-task designation of “walking” in a 1g environment may
be represented by a daisy chain (repetitive sequence) of
sequential chunks where each sequential set of chunk may
represent one step of leg #1 and #3 of a 4-legged system.
Lifting leg #1 and #3 is one chunk, bringing both legs forward
approximately fifty-centimeters is the second chunk, setting
it down and shifting the body weight to leg #1 and #3 repre-
sents the third chunk. The same set of 3 chunks is repeated
for leg #2 and #4. An alternating sequence of three chunks
per leg represents the daisy chain sequence of “walking.

The robot must “learn” or be “trained or programmed” to
perform all the tasks identified in the HTD shown in figure 8.
In order to be proficient in the performance of a mid level
task, the robot must learn, or be “trained” to perform the
lower level “chunks” that comprise the lower levels of the
HTD.

3.4.2 Programming the TSM is achieved
by means of the HTD

The HTD is the top level programming and training specifica-
tion for the TSM. The TSM may be programmed by the sys-
tem designer (supervised programming). To facilitate super-
vised programming, every task listed on the HTD must have
a g-final-TT and a priority level associated with it. The func-
tion of the TSM is to recognize and prioritize the pattern of
activation.The TSM therefore consists of a pattern recogni-
tion circuit that is programmed to recognize the patterns
recorded on the nodal map module. The input to the pattern
recognition circuit includes the location codes and character-
istics of the pattern. Pattern recognition circuits that are
applicable to the TT-search task have been designed and
innovated by Stephen Grossberg [14] and Gail Carpenter
[15].

3.4.3 Supervised Programming of the TSM:
Programming a volitional multi-tasking robot

The TSM-pattern recognition circuit must be programmed to
recognize and prioritize all g-final-TT tasks listed on the HTD.
Figure 9 shows the functional flow through the TSM-pattern
recognition circuit. The high priority output of the pattern
recognition circuit, in the form of a g-final TT signal, goes
directly to the Sequence Stepper module and initiates the
sequence of pre-planned actions associated with the TT. The
TSM module of any RRC robot may be programmed off-line

to perform any sequence of HTD-TT tasks that are recog-
nized and prioritized by the pattern recognition circuit.

3.4.4 The Functional flow through the TSM and SSM

The Sequence Stepper Module is activated by the g-final-TT
output of the pattern recognition circuit of the TSM. During
each frame period, the g-initial, g-final and a group of visual
and tactile g-patterns are recorded on input world space
(“Self” nodal map module). The recorded patterns are the
input to the pattern recognition circuit of the TSM. The pat-
tern recognition circuit is programmed to recognize and pri-
oritize some of the g-patterns. If the g-final is the highest pri-
ority TT-task detected during that frame period, then the g-
final is applied to the Sequence Stepper Module. The
Sequence Stepper Module is then activated to scans the
region between g-initial and g-final. ): For the design of an
obstacle-avoiding robot, the Sequence Stepper Module is
designed to search the intermediate nodes between g-initial
and g-final. The search is generally restricted to the lower pri-
ority TTs that define solid obstacles. The Sequence Stepper
Module generates a pre-planned navigational path made up
of a sequence of g-positions and p-control signals at each g-
position that is dependent on the g-pattern detected at each
node. If low priority level code values are assigned to all solid
obstacles, then the Sequence Stepper may be designed to
generate a curved path that avoids the lower code value
obstacle locations. And during that same frame period, the
Control Signal Module may activate the first nodal transition
in the pg sequence generated by the Sequence Stepper
Module.

3.4.5 A Procedural Memory Circuit in the controller

The HTD, the “self” nodal map recording monitor and the
TSM-pattern recognition circuit, are analogous to a proce-
dural memory system in the brain. The Hierarchical Task
Diagram (HTD) is the basic specification for a multi-task
robotic system. The HTD describes the tasks and the priori-
ty level TT that is assigned to each task that the robot is
designed and programmed to perform. The pattern recogni-
tion circuit must be taught (programmed) to recognize the
total set of TT-priority levels that have been designed into the
HTD. During each frame period the pattern recognition circuit
of the TSM examines the priority levels of all TTs that are
recorded on the “self” nodal map module. Depending on the
real time recording on the “self’ nodal map module, the robot
performs and remembers a complex sequence of obstacle
avoiding tasks all aimed at fulfilling the prime tasks shown on
the HTD (figure 8).
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3.4.6 Low priority Obstacle Avoidance

One of the fundamental design constraints on the pattern
recognition circuit of the TSM is the volitional constraint
applied to obstacle avoidance. The volitional constraint gives
the robot a re-planning capability of a pre-planned trajectory,
at intermediate points between g-initial and g-final. Obstacle-
avoidance may be programmed in the Sequence Stepper
Module. In the supervised programming mode, It is possible
to program obstacle avoidance in the pattern recognition cir-
cuit as well as the Sequence Stepper Module.

Low priority and high priority Obstacle Avoidance
in the Pattern Recognition Circuit

For a robot performing multiple tasks, with a multiple set of
trained nodal maps, the TSM must generate TTs that select
the nodal map as well as the tasks defined by the HTD. The
search engines shown as the top level of the HTD (figure 8)
operating in conjunction with the “self’ nodal map, is the pri-
mary source of operational TTs. The function of the search
engines is performed by the pattern recognition circuit. The
task selecting-pattern recognition circuit, shown in figure 8,
may generates Task-initiating Triggers (TT) that initiate the
performance of top level tasks. For example in figure 8, the
search engine initiates the tasks labeled Prime Task A, B, C,
and one task at each level below the top level prime task, all
the way down to the bottom level, where “chunking” of the
simple motor actions, occur.

In a multitasking robot, a hierarchy of priority level-TTs
must be programmed into the pattern recognition circuit.
Most obstacles are observed as low priority TT-patterns
occurring in the path of a higher priority g-final. In this case
the obstacle avoiding path is generated by the Sequence
Stepper Module. However when an obstacles become a high
priority TTs, it is detected by the pattern recognition circuit.
For example, the priority level assigned to a visual pattern of
an obstacle must be a function of distance and speed.
Obstacles at large distances and velocities that do not pose
a danger to the “self’ are assigned low priority in the pattern
recognition circuit. In this case (large distance, benign veloc-
ity), the pattern recognition circuit may respond to a higher
priority TT, and the Sequence Stepper may respond to the
obstacle only if it is in the path between g-initial and g-final.
In successive frames, as the robot gets close to the obstacle,
the priority level of the pattern-code value is programmed to
increase as a function of distance to the obstacle (in the pat-
tern recognition circuit). At a sufficiently high priority-code
value the pattern recognition circuit is programmed to gener-
ate a task Interrupt-TT that activates the Sequence Stepper
Module with a g-final that avoids the obstacle, (stop or turn).
In case of a speeding obstacle (for example a projectile), in
successive frames, as an obstacle or projectile gets closer to
the “self’ circuit, the priority-value code is programmed to
increase as a function of speed and distance. Again, at suf-
ficiently high priority-code values the pattern recognition cir-
cuit is programmed to generate a task Interrupt-TT that
avoids the projectile, (blink or duck). This programming of the
pattern recognition circuit is related to an innate biological-TT
associated with the speed and distance of a projectile or
obstacle relative to the “self’ circuit (associated with the
“blink” or “duck” response).
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3.5 Programming the priority levels of TT-tasks
recognized by the TSM

The basic specification for a multi-task robotic system is a
Hierarchical Task Diagram (HTD) that describes the tasks
and the priority level-TT of each task that the robot is pro-
grammed to perform. During each frame period the pattern
recognition circuit of the TSM examines the priority level of
all TTs that are recorded on the “self” nodal map module. The
input to the pattern recognition circuit of the TSM consist of
the g-pattern-code values recorded on the “self’ nodal map
recording monitor. All input TT-pattern-are assigned (by the
designer) one of a multiple number of priority levels. For
example, three priority levels and an obstacle detection level
may be assigned to certain sets of g-pattern value codes. An
emergency-TT is assigned the highest priority, whereas
other TT-patterns are assigned mid-level and low level prior-
ity. Obstacles are assigned a lower priority level than the low
level-TTs. The mid-level and high-level TTs are task interrupt
TTs. That is, a high level TT will interrupt all tasks being per-
formed by the controller. A mid-level TT will interrupt only the
low-level TT tasks. And the low level TTs will control the robot
whenever mid-level and high level TTs are absent.

There are a number of constraints on the generation of
Task-initiating Triggers (TTs), that arise from the fact that
there are certain tasks that the robot can and cannot perform
simultaneously. Starting at the top of the HTD shown in
Figure 8, and working downward, the following constraints
are noted:

A. At the top level, 3-TTs may be generated simultane-
ously, one by each of the engines shown at the top of the fig-
ure. However, with one exception, only one prime task may
be performed at any time (because different “training” or
learning is performed at all lower levels of different prime
tasks shown on the HTD). The one exception is that hand
manipulation tasks performed with the visual search engine,
always require pressure transducer input (touch feel data),
performed with the tactile search engine, to assure that the
object being manipulated is not damaged. Thus whenever a
hand manipulation task is activated, the tactile search engine
detects it, and immediately activates tactile search engine
prime task A” which operates simultaneously with the prime
task under which the hand manipulation task is performed.

B. The internal-TT search engine is an emergency-TT
generator. All TTs generated by the Internal-TT Engine are
high priority, task interrupt triggers that put the robot into a
protective task sequence. High priority TTs generated by the
visual search engine, and the tactile search engine, go to the
Internal TT Engine for implementation. If a TT is generated
by the internal engine, that TT overrides all other TTs, and
the robot is shifted either immediately, or with a fixed time
delay, to performing one of the emergency protective tasks
Prime task A’ or Prime task B’ shown in the diagram. Some
sample emergency TTs that initiate the primed tasks are

1) A crash, or any sharp (damaging collision) blow to the

robotic body (“self”).

2) A threatening, fast moving object or projectile that is

about to collide with the robot.

3) An unprovoked attack (by animals or humans).

4) Sudden sharp blinding light impinging on the camera

lens.

5) A malfunction of any robotic part that interferes with

proper accomplishment of the prime task. Or
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6) The detection of maintenance requirements, or mal-
functions that do not interfere with the performance of
the prime task, but are precursors or predictors of
future interference. (Time delayed emergency -TT)

C. The Tactile Search Engine generates, in addition to
high priority and low priority triggers, 2-TTs that are assigned
an intermediate level priority. They are

1) The Prime task B” “Surface (skin) Maintenance
and Repair” task. And

2) One intermediate priority trigger in Prime task C”
associated with leg motion tasks.

The intermediate priority task B” triggers are used to alle-
viate minor surface (skin) irritations, such as scratching an
itch or adjusting some robotic part that has become mis-
arranged. The Task C” intermediate priority trigger activates
a “blind walking” task, when there is not sufficient light to
implement a “Leg Motion” task under the visual search
Engine category.

Both triggers are short term mid-level priority, task inter-
rupt triggers that will interrupt the performance of low priority
tasks, repair or alleviate the environmental condition that
gave rise to the trigger, and then return the control to the task
that was interrupted.

D. All other TTs generated by the Visual Search Engine,
and the Tactile search Engine, are low priority TT.

1. There are three lower level tasks shown imme-
diately below the Prime Task level, shown in fig-
ure 8. They are Leg motion tasks, Hand manipu-
lation tasks, and Arm Motion tasks. Those three
tasks may be performed simultaneously, or each
task may be performed individually, independent
of the other two. Generally the three tasks are
temporally coordinated with one another.

2. There are a multiplicity of tasks below each of
the Leg Motion, Hand Manipulation, and Arm
Motion tasks. At each of the lower levels, only
one sub-task may be performed at any given
time. That is, under the Leg Motion Tasks cate-
gory, the robot may perform either “Directed
walking” or “Dancing”, but it cannot perform
those two tasks simultaneously. Similarly, when it
does directed walking, it could walk towards des-
tination A, B, or C, but only one destination, at a
time.

4 EVA-ROBOTIC SYSTEMS

Ambulating in zero-g inside the space lab compart-
ment and EVA inspection and surveillance.

Some primary task objectives that the multi-tasking EVA-
robotic controller may be trained to perform are:

A. Ambulating in a 1g environment

B. Repair and replacement of parts in 1g

C. Ambulating in a zero-g environment (inside a
spacelab/space station environment)

D. Inspection of the exterior surface of a spacecraft for
micrometeorite hits in a zero-g environment
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Figure 10. Ambulating in a 1g environment.

4.1 Ambulating in a 1g environment

Daisy chain walking of the EVA-robot was outlined in section
3.4.1. Figure 10 is a pictorial representation of an ambulating
EVA-robot. A motion picture video of the walking robot has
also been generated. The HTD shown in Figure 8 shows the
directed walking task at the third level of prime task B. All the
tasks must be listed in an HTD and a priority level must be
assigned to each task. The sequence of TTs generated by
the TSM for the directed walking daisy chain is as follows:
a) Adestination-A g-final is applied to the directed walking
task (3rd level) of prime task B (See Figure 8).
b) Destination A-g-final TT is applied to the NMM thereby
activating cyclic chunking
c) Cyclic chunking activates lifting leg #1 and #3.
d) Zero reaction forces on legs 1,3 generates a TT to
“stop lifting”.
e) “Stop lifting” generates a TT to bring legs 1,3 forward
(50 centimeters)
f) Legs at 50 centimeters leads to shifting body weight to
legs 1,3.
g) Reaction forces on legs 1,3 activates lifting of legs 2,4.
h) Etc

4.2 Robotic repair or replacement of parts

An ambulating robot may also be trained to perform repair or
replacement of parts. All the tasks must be listed in an HTD
and a priority level must be assigned to each task. In this
case the robot performs directed walking towards a destina-
tion TT-pattern that may be painted on the part to be
replaced.

a) The destination TT activates a cyclic walking
towards the destination.

b) The robot is programmed to stop when the dis-
tance-TT=50 centimeters

c) The stop is a TT that activates the prime task B
hand manipulation task, and the search for a TT-pattern
identifying the part to be replaced.

d) The TT pattern activates an index finger reaching
task.

e) Touching the object may generates either a grasp-
ing task, followed by an attempt to move the part. Failing to
move the part may trigger the task of reaching for a screw
driver and unscrewing a set of screws, etc etc

4.3 Ambulating in a zero-g environment

Figure 11 shows the EVA robotic system “monkey climbing”
in a zero-g environment. In this case the EVA robot may use
both arms or legs for climbing in an environment where
grasping bars are readily available. All the tasks must be list-
ed in an HTD and a priority level must be assigned to each

Rosen & Rosen ©2008 MCon Inc. All rights reserved
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Figure 11. Zero-g “monkey climbing” in the interior of the spacecraft.

task. The EVA is trained to perform the line dance shown in
the HTD.

a) The image of a grasping bar-TT leads to a reaching
motion of an arm or leg.

b) Touching the bar with an index finger leads to the
activation of the hand manipulation task.

c) The hand is extended and then grasps the grasping
bar.

d) A solid grip on the grasping baris a TT that leads to
grasping with other arms or legs. Etc.

4.4 Inspection of the exterior surface
of a spacecraft

Figure 12 is a pictorial representation of an EVA robot
inspecting the exterior of a spacecraft in a zero-g environ-
ment. The robot may be designed with electrostatic foot
pads, sticky foot pads or grasping feet (shown in the Figure).
The robot may ambulate as described in 4.1, 4.2, or 4.3, and
inspect the surface visually or by sliding the tactile hand
palms and finger sensors over the smooth surface of the
spacecraft. The robot may be trained to perform repair and
replacement of parts by adding those prioritized task to the
HTD.
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